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Abstract 

 Based on a lecture from the mid 1960’s, a direct and simple introduction is given to 

the design of a computer algorithm for the construction of contiguous value-by-area 

cartograms. Both the regular and the irregular polygon cases are treated.  There then follows 

a presentation of the subsequent history of the subject including variant algorithms. As an 

example a table of latitude/longitude to rectangular plane coordinates is included for a 

cartogram of the United States. The value of treating the subject within the context of map 

projections is explained. 
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         A value-by-area cartogram is a map projection that converts a measure of a 

non-negative distribution on the earth to an area on a map. Consider first a 

distribution h (u, v) on a plane: 

 

Next consider an area on the map: 

 



We want these to be the same. That is, the map image is to equal the original 

measure:  

Image area on map = Original volume on surface, 

Or  

∆x ∆y = h ∆u ∆v. 

As an aside, observe that in his treatise of 1772 J. H. Lambert defined an equal 

area map projection in exactly this fashion, setting spherical area equal to map 

surface area (Tobler 1972). 

Now replace the ∆’s by d’s, i.e.  

dx dy = h du dv. 

This can be rewritten in integral form to cover the entire domain as 

∫∫ dx dy =     ∫∫ h du dv 

To solve this system we can insert a transformation, i.e., divide both sides by 

dudv to get dxdy/dudv = h (u, v) which can be recognized as the Jacobian 

determinant. That is, with this substitution the condition equation becomes 

J = ∂ (x, y)/∂ (u, v) =  h (u, v). 

Written out in full we have the equation 

∂x/∂u ∂y/∂v  -  ∂x/∂v ∂y/∂x = h (u,v). 



To apply this to a sphere it is only necessary to multiply by R2 cos φ on the 

right hand side of this equation, substituting longitude (λ) and latitude (φ) for 

the rectangular coordinates u and v. 

 Reverting now to the pictures on the plane, a small rectangle will have  

 

nodes identified by cartesian coordinates given in a counterclockwise order: 

The area of such a rectangle is given by the determinant formula 

  |X1   Y1|       |X2   Y2|       |X3   Y3|       |X4    Y4| 
           2A = |            |  +   |           |  +  |            |  +   |            | 
  |X2   Y2|        |X3  Y3|       |X4   Y4|       |X1    Y1| 
 

It is now desired that this area be made equal to the “volume” h (u, v). This can 

be done by adding increments ∆x, ∆y to each of the coordinates: 

The new area can be computed from a formula as above but now using the 

displaced locations Xi + ∆Xi  , Yi + ∆Yi , i = 1, … ,4. 

Call the new area A’. Now use the condition equation to set the two 



areas equal to each other A’ = A. Recall that A’ is, by design, numerically 

equal to h (u, v). The equation A’ =  h  = A  involves eight unknowns, the ∆Xi 

and the ∆Yi , i = 1…4.   Now it makes sense to invoke an isotropicity condition, 

to attempt to retain shapes as nearly as possible. So set all ∆Xi and ∆Yi equal to 

each other in magnitude, and simply call the resulting value ∆. That is, assume  

∆X2 = -∆X1     ∆Y2 = ∆Y1 

 ∆X3 = -∆X1      ∆Y3 = -∆Y1 

 ∆X4 =  ∆X1      ∆Y4 = -∆Y1 

and finally that ∆= ∆X1 = ∆Y1. 

This is also the condition that the transformation be, as nearly as possible, 

conformal, that is, locally shape preserving, and minimizes the Dirichlet 

integral 



∫ R (∂x2/∂u + ∂y2/∂v + ∂x2/∂v + ∂y2/∂u ) dudv. 

And this renders the transformation unique. Thus A’ is just an enlarged (or 

shrunken) version of  A. Working out the details yields  

A’ =  4∆2 + ∆ (X1 - X2  - X3  + X4 + Y1 +Y2 – Y3 - Y4) + A 

And this needs to be solved for the unknown ∆. Once This quantity is found 

the problem has been solved. The map area A’ is now numerically equal to the 

numerical value of h (u,v).  

Many different equal area map projections are possible, and the same 

holds for value-by-area cartograms. There is one defining equation to be 

satisfied but this is not sufficient to completely specify a map projection. The 

choice of a transformed map that looks as nearly as possible like the original 

was made above but there are other possibilities for the second projection 

condition. 

If the regions with which one is dealing are irregular polygons, instead 

of rectangles, the procedure is exactly the same. One simply translates to the  

centroid of a polygon and then expands (or shrinks) by the proper amount to 

get the desired size. The scale change is the square root of  (A’/A) , from which 

∆ is easily calculated. 

 



When two rectangles, or two polygons, are attached to each other there 

will nodes in common. The amounts of displacement calculated independently 

for such a node will differ. Suppose one displacement is calculated to be ∆1 

and the other ∆ 2. Then take the average. But this means that neither will result 

in the desired displacement. In particular, in a set of connected rectangles, or 

polygons, this problem will occur at most nodes. Some will be connected to 

more than two regions. Again, just take the average of all displacements. After 

all displacements have been calculated apply them by adding the increments to 

every node. Then repeat the process in a convergent iteration. Eventually all 

regions will obtain their proper, desired size. 

 There remains one final problem. The displacement at a node can be 

such that it requires that the node cross over the boundary of some region. This 

must be prevented. Equally seriously displacing two nodes may result in the 

link between them crossing over some other node. And this again must be 

prevented. Under-relaxation - shrinking the displacements to some fraction, 



say 75%, of the desired values helps avoid, but does not prevent, the problem. 

The technique used in the computer to solve this difficulty is to recognize that 

when a node of a triangle crosses over the opposite edge of the triangle then 

the area changes sign, from positive to negative. Every node must be checked 

against every boundary link, and every link must be compared to every node. If 

a crossing is detected then shrink the displacement until it is no longer is a 

problem. This topological checking slows the algorithm down considerably. 

The next iteration will compute a new displacement and the desired result is 

eventually achieved. The topological check also prevents negative areas from 

occurring. Negative areas are not permitted, since by assumption, h (u, v) is 

non-negative. 



The “error”, the discrepancy between the desired result and the result 

obtained, is measured by  ∑ |A – A’| / ∑ A  with A’ normalized so that ∑ A’ = 

∑ A over all areas. The convergence of the algorithm then follows a typical 

exponential decay. My experience has been on an IBM 709 computer with data 

given  

 

by latitude and longitude quadrilaterals. Or using states as the data-containing 

polygons. Using one degree population data for the continental United States, 

with a 25 by 58 lattice (= 1450 cells) the program required 25 seconds per 

iteration. 

------------------------------------------------------------------------------------------- 

Postscript 

The foregoing is a transcription of a lecture delivered in the mid 1960’s to 

Howard Fischer’s computer graphics group at Harvard University. Two 

computer versions then existed. These were based on my 1961 Ph.D. thesis. 



One program treats data given by latitude/longitude quadrangles, the other is 

for irregular polygons. The lattice version worked on the latitude/longitude 

grid (or any orthogonal lattice) and produced a table of x, y coordinates for 

each degree of latitude and longitude. In other words the program produced 

tables of x = f (φ, λ), y = g (φ, λ). These are the two equations required to 

generate a map projection. An example is given here in the table. 

  Map projectioon coordinates for a cartogram of the United States  
   Values in degrees 
 
      LATITUDE  24 N  29 N  34 N  39 N  44 N  49 N 
  LONGITUDE        
     125 W    X 0.901 0.512 0.258 0.916 1.469 0.705 
 Y 0.520 1.295 6.529 17.856 23.559 28.786 
     120 W X 2.572 1.744 1.428 3.050 3.350 3.772 
 Y 0.272 1.151 7.256 16.240 22.415 29.166 
     115 W X 5.364 5.634 5.422 4.351 4.779 5.505 
 Y 0.384 1.203 7.656 14.756 22.841 27.355 
     110 W X 6.457 6.526 6.196 5.171 6.072 6.231 
 Y 0.519 1.643 9.624 15.592 23.570 27.464 
     105 W X 7.124 7.118 6.897 6.082 6.783 7.151 
 Y 0.526 1.908 10.340 16.850 23.989 27.529 
     100 W X 8.375 8.474 8.035 7.875 8.102 7.985 
 Y 0.177 1.526 9.030 17.452 23.991 27.597 
      95 W X 12.221 13.372 10.826 10.653 9.944 10.867 
 Y 0.205 1.873 9.683 17.012 24.102 28.341 
      90 W X 16.575 16.741 17.082 14.738 15.994 17.012 
 Y 0.481 1.492 8.323 16.218 25.606 28.773 
      85 W X 23.867 24.124 23.866 24.013 24.001 24.279 
 Y 0.325 1.401 6.476 14.864 26.785 28.610 
      80 W X 33.333 33.993 32.520 32.508 33.131 32.813 
 Y 0.618 2.031 4.538 13.440 26.556 28.511 
      75 W X 41.886 42.043 43.210 40.877 39.962 39.961 
 Y 2.195 2.971 4.184 8.479 26.184 28.638 
      70 W X 46.932 46.854 47.618 48.131 48.249 47.535 
 Y 2.085 2.958 5.590 10.501 26.452 29.172 
      65 W X 48.652 48.117 48.811 49.469 49.630 49.291 
 Y 1.311 2.718 6.350 13.588 25.608 28.695 

 

Using a standard map projection program it is possible to plot coastlines, state 

boundaries, rivers, etc., by interpolation using data given in these coordinates. 

At that time the University of Michigan CalComp plotter was used. The figure 



shows an example (not from the coordinate table above – based on a different 

set of data). 

 

A separate program, again independent of any particular map projection, 

computed the linear and angular distortion of Tissot’s (1881) indicatrix by 

finite differences from this same coordinate file. Tissot’s measure of area 

distortion on map projections had been shown (Tobler 1961) to be equal to the 

desired area on a cartogram. The cartogram program was tested by entering the 

spherical surface area for latitude/longitude quadrangles and, as expected, 

yielded an equal-area map projection for the United States similar to that by 

Albers. The second program used state outlines, or general polygons instead of 

a grid, directly. Both programs allowed one to specify particular points to be 

fixed – not to be moved – so that, for example, some exterior boundaries could 

be fixed. Or points critical for recognition of landmarks could be retained. 

Both programs also had an option to produce an initial pseudo-cartogram, 

treating the quantity to be preserved, h (u, v), as if it could be approximated by 



a separable function of the form h1 (u) h2 (v). To do this the program 

“integrates” the data in the u direction and then separately in the v direction. 

The effect is somewhat like using a rolling pin in two orthogonal directions on 

a batch of bread dough. This is used to compute a beginning configuration 

from which to initiate the iterations, saving computer time, but it also affected 

the resulting appearance of the cartogram. A similar residual effect can be 

observed if a cartogram is begun with information given on a world map 

projection such as the sinusoidal or Mollweide. Another trick is to begin with a 

simplified set of polygon outlines, iterate to convergence, and then restart with 

more detailed polygon outlines, etc. Since data given by political units 

(polygons) often varies dramatically from one polygon to the next it also 

makes sense to use pycnophylactic reallocation, which does not change the 

total data within any polygon, but redistributes it to obtain a smoother 

arrangement with less drastic fluctuation from polygon to polygon. If using 

finite differences (Tobler 1979) for this smooth reallocation, the individual 

polygons are partitioned into small quadrangular cells and the computer 

version for a regular lattice is used, and the coordinates of the cell vertices are 

retained for subsequent plotting. If finite elements with triangles (Rase 2002) 

are used to implement the smoothing reallocation within the polygons then the 

computer program version for irregular areas must be used. 



In addition to the Harvard lecture the algorithm was also presented to a 

conference on political districting (Tobler 1972) and at a conference on 

computer cartography applied to medical problems (Tobler 1979). A 

description of how to proceed when the geographical arrangement of 

phenomena is known through the use of an approximating mathematical 

equation was also given in the 1961 thesis, in the 1963 paper, in the 1979 

paper, and in the 1974 program documentation. Additional programs at that 

time could produce a hexagonal grid to cover a region and to produce an 

inverse transformation from the lat/lon grid and the tables of x, y coordinates. 

The tables then are for φ = f –1 (x, y) and λ = g –1 (x, y). This allows the inverse 

transformation of the hexagonal grid to lie, in warped form, over the original 

image, in an attempt to replicate Christaller’s central place theory in a domain 

of variable population. An example is shown in the 1972 paper, and reprinted 

in Tobler (1976). 

An interactive version of the polygon program version, using a 

Tektronix display terminal, was prepared in 1970 by Stephen Guptill and 

myself, and presented at a computer conference in 1974. This program allowed 

the topological checking to be performed visually, thus avoiding the need for 

the tedious computer topological solution. The discrepancy in each polygon 

was indicated by scaled plus or minus symbols at the polygon centroids and the 



proposed change at each iteration could be superimposed on the previous 

result, or on the original configuration, shown as a set of dashed lines. Using 

the interactive cursor the cartographer could zoom in on a location on the map 

to move and improve offending, or inelegant, displacements. The computer 

costs were then reduced 100-fold since the topological checking could be 

disengaged. An example is shown in the figure for a portion of a map of South 

America. 

 

Most of the FORTRAN programs were distributed in a 110 page Cartographic 

Laboratory Report (No. 3, 1974) from the Geography Department at the 

University of Michigan. Several of these programs were later (circa 1978) 



implemented on a Tektronix 4054 in the Geography Department at the Santa 

Barbara campus of the University of California. 

In 1971 G. Ruston published a computer program that uses a physical 

analogy. One may imagine that a thin sheet of rubber is covered with an 

uneven distribution of inked dots. The objective is to stretch the rubber as 

uniformly as possible until the dots are evenly distributed on the sheet. This 

simple description is an approximate representation of the mathematical 

statement used for his computer program. If the dots represent the distribution 

of, say, population, the resulting cartogram is such that map areas are 

proportional to the population. Hexagons drawn on this surface can represent 

market areas when the rubber sheet is relaxed to its original, pre-stretched, 

form. Uniqueness would seem to me to depend on boundary conditions. 

In 1975 A. Sen published a theorem about cartograms. In effect he 

asserted that the least distorted cartogram has the minimal total external 

boundary length of all possible areal cartograms. Interestingly this had been 

empirically discovered by Skoda and Robertson in 1972 while constructing a 

physical cartogram of Canada using small ball bearings to represent the unit 

quantity. Similar methods were reported by Hunter & McDowell (1968) and 

by Eastman, Nelson & Shields (1981). 



Kadman and Shlomi in 1978 introduced the idea that a map could be 

expanded locally to give emphasis to a particular area. Hägerstrand (1957) 

already did this of course, and Snyder’s (1987) “Magnifying Glass” map 

projection uses a similar idea. More recent versions of this idea appear in Rase 

(1997, 2001), Sarkar (1994), and in Yang, Snyder, and Tobler (2000). 

In 1983 Appel, et al, of IBM patented a cartogram program that worked 

somewhat like a cellular automaton. Areas were represented as cells and 

“grew” by changing state (color) depending on the need for enlargement or 

contraction. 

In 1985 Dougenik, Chrisman, and Niemeyer of the Howard Fischer’s 

Harvard Computer Graphics Laboratory published an algorithm that differed 

from the one that I developed in a small but important respect. Instead of 

applying the displacements to all nodes after all of them had been computed, as 

in my algorithm, they applied them immediately to all nodes. This was done 

after computing the required displacements for only one polygon. 

Displacements, discounted by a spatially decreasing function away from the 

centroid of the polygon in question, were then applied to all polygon nodes  

simultaneously. They then moved on to the next polygon and repeated the 

procedure. Iterations were still required. The result is a continuous 

transformation of a continuous transformation, and that of course is 



continuous. As a consequence they avoided the necessity for a tedious 

topological constraint and virtually all topological problems were avoided. 

Depending on the complexity of the polygon shapes occasional overlapping 

might still occur, but only infrequently. Almost all subsequently developed 

programs stem from this publication. 

Three further examples are worth citing. One was presented in 1993 by 

the Soviet authors Gusein and Tikunov (also Tikunov 1988). Another, with 

emphasis on medical statistics, formed the basis for a Ph.D. dissertation at the 

University of California at Berkeley by D. Merrill et al (1991), also Selvin et al 

(1988). An earlier health oriented paper is by Levinson & Haddon (1965). 

Most recently A. Herzog of the Geography Department of the University of 

Zürich has prepared a program for interactive use on the Internet. 

D. Dorling, in 1991, developed a novel approach. Using only centroids 

of areas he converts each polygonal area into a small bubble – a two 

dimensional circle. These bubbles are then allowed to expand, or contract, to 

attain the appropriate areal extent. At the same time they attempt to remain in 

contact with their actual neighbors. Dorling also colors the resulting circles 

depending on some additional attribute. His work contains, as of the 1991 date, 

the most comprehensive bibliography on the subject of area cartograms. The 

bubble algorithm is most popular in the United Kingdom, perhaps because a 



complete computer program was published, and now also seems to be 

available on the Internet. 

The most recent implementation is from Texas, again in a thesis 

(Kocmoud, 1997, also Kocmoud & House 1998). This interesting algorithm 

attempts to maintain shape in addition to proceeding to correct areal sizes. The 

shape preservation alternates with area adjustment in each iteration. As 

implemented it is rather slow, but can probably be improved. Other computer 

scientists (Edelsbrunner &, Waupotisch 1995) have also studied the problem. 

An undergraduate thesis has also been presented by Inglis (2001), and there is 

a master’s thesis by Torguson (1990). Some literature exists in German 

(Elsasser 1970), Rase (2001) too. 

  It has also been suggested that cartograms are difficult to use, although 

Griffin (1980) does not find this to be the case. Nevertheless Fotheringham, et 

al (2000, p. 26), in considering Dorling’s maps, state that cartograms  

“…can be hard to interpret without additional information to help the user 

locate towns and cities”.  

The difficulty here is that many people approach cartograms as just a clever, 

unusual, display graphic rather than as a map projection, and not similar in 

purpose to Mercator’s projection as an analogue method of solving a problem. 

Mercator’s map is not designed for visualization, and should not be used as 



such. If the anamorphic cartograms are approached as map projections then it 

is easy to insert additional map detail. In the case of Dougenik et al’s, or 

Dorling’s, or other, versions simply knowing the latitudes and longitudes of the 

nodes or centroids allows one to draw in the geographic graticule, or to plot 

any additional data given by geographic coordinates. And this can be done 

using a standard map projection program augmented by a subroutine to 

calculate from a map projection given as a table of coordinates. Included here, 

in addition to the geographic graticule, could be roads, rivers lakes, etc., and 

these would enhance recognition. Dorling’s bubbles could be replaced by 

administrative units or other features. One could then even leave off of the map 

the administrative or political units that were used in the construction of the 

cartogram. And one could replace these by superimposing an alternate set of 

boundaries or other information (for example, disease incidence, poverty rates, 

or shaded topography). This requires a bit of simple interpolation from the 

known point locations. Another advantage is that a light smoothing can also be 

applied to the graticule (coordinates) to improve the map’s appearance. It is 

then also possible to use Tissot’s results to calculate the angular and linear 

distortion of the map - the areal distortion, Tissot’s S, has been shown (Tobler 

1963) to be equal to the distribution being presented. Tissot’s indicatrix is 

useful in comparing two cartograms obtained from the same data using 



alternative algorithms. A similar result holds true of cartograms that distort 

using time or cost distance rather than areal exaggeration. It is now also 

obvious that one can calculate a cartogram to fit on a globe - a mapping of the 

sphere onto itself. Examples might be to represent surface temperature or 

annual precipitation. From this any equal area map projection (Albers, 

Mollweide, sinusoidal, Lambert, etc.) can be used to represent the information 

as an anamorphose on a flat map. 
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