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Abstract: Imagine that one could stretch a geographical map so that areas with many people would 

appear large, and areas with few people would appear small. If such a map could be made one 

would expect all voting districts to be the same size for they should contain equal numbers of 

people. Drawing on such maps should simplify the process of creating district boundaries. The 

construction of maps of the requisite type is shown to require the simultaneous solution of a pair 

of nonlinear partial differential equations, for which an iterative computer solution procedure has 

been devised. An experimental attempt to district using this method is described. 

 

 Suppose that one could stretch a geographical map so that areas containing many people would 

appear large, and areas containing few people would appear small. On a rubber map, for example, 

every person might be represented by an inked dot. We now imagine the rubber sheet to be stretched 

so that all the dots are at an equal distance from each other (see Ruston 1971). If such a map could be 

constructed, then all perfect political districts should be the same size, for they should contain equal 

numbers of people. Alternately, one might wish to construct district boundaries by drawing them as 

hexagons on such a map. These general notions are made more precise and given mathematical 

definition in the paragraphs that follow. The political problem of districting is related to a classical 

theoretical problem in the field of geography. The location-theoretic problem of positioning service 

facilities (schools, hospitals, stores, cities, and so forth) in a geographic area of varying population 

density has a structure similar to the districting problem (see Bunge 1966). This theoretical problem in 

geography provided the main impetus for my research, and it is reflected in the results to be 

demonstrated. 

 Assume first that the relevant population density is described as a continuous nonnegative function 

of position, h (x, y). A small rectangle bounded by x, x + ∆x, y, y + ∆y then contains h (x, y) ∆x ∆y 

people. This number is to be the same as the area of a small rectangle bounded by the lines u, u + ∆u, 

v, v + ∆v on the final diagram. The condition equation thus becomes h (x, y) ∆x ∆y = ∆u ∆v. Passing to 

 

  



differentials, we have h (x, y) dx dy = du dv, and, inserting the Jacobian determinant for a change of 

variables h (x, y) dx dy = [(Μu/Μx)(Μv/Μy) – (Μu/Μy)(Μv/Μx)] dx dy. The basic differential equation of 

the system is thus J = h (x, y). This is immediately seen to be a generalization of the notion of an equal 

area mapping and easily extended to a sphere or ellipsoid (see Tobler 1963). We do not wish to place 

any restrictions, other than boundedness, on the density function h, thus ruling out some simpler 

solutions to this equation, as for example might be suggested if h were separable, or centrally 

symmetric when given in polar coordinates. The basic differential equation defines an infinite number of 

possible distorted maps or cartograms. The necessary next step is to add further conditions, and the 

one, which comes to mind immediately, is rather obvious. The distorted map should look as much like 

the usual map as possible or — in keeping with the present context — should maintain compactness as 

nearly as possible. These two statements turn out to be mathematically equivalent and require that the 

transformation be as nearly conformal as possible. The entire problem is thus given as 

Minimize  ∫∫R  [Μu2/Μx + Μu2/Μy + Μv2/Μx + Μv2/Μy] dx dy 

                         subject to  (Μu/Μx)( Μv/Μy) – (Μu/Μy)( Μv/Μx) – h (x, y) = 0 

 

which requires only minor modification to be adapted to the terrestrial sphere or ellipsoid. 

 An analytical solution to this pair of equations is not known, but an iterative finite difference method 

has been programmed. The basic algorithm is as follows. Consider a rectangle on the map with 

bounding vertices ui, vi, i = 1, 2, 3, 4. The area of this rectangle is easily computed as a function of the 

values of vertex coordinates and can be compared with the desired area as defined by h, suitably 

normalized. By adding small increments ∆ui, ∆vi, i = 1, 2, 3, 4, to each of the vertex coordinates we can 

change the area of the rectangle. It is only necessary to compute the appropriate values for ∆ui, ∆vi, i = 

1, 2, 3, 4. These values are obtained by writing the equation for the difference in area as a function of 

the modifications to the vertices. But there are eight values to be found, and only one equation. We now 

invoke the near conformality requirement which says that the change is to be a similitude. The single 

increment to the vertex coordinates is now found to be given by a quadratic function involving the 

difference between the desired and actual area of the rectangle. 

 This completes the adjustment for one rectangle. An interior vertex point, however, will be connected 

to four rectangles, and the latter may conflict in their desired adjustments. The vector mean of the 

displacements is used in this case, and the program cycles back for another iteration. The method is 

easily extended to cells of arbitrary shape. The program converges but it is slow, because before any 

vertex is adjusted a topological test must be performed to keep vertices from crossing the boundary of 

 

  



any cell, and boundaries are not allowed to cross over vertices. A mean square error criterion has been 

adopted to measure the efficacy of the iterations. 

 The United States has been used as a first example, beginning with an estimate of the number of 

people contained within each one degree quadrilateral of latitude and longitude. The computations start 

from an initial configuration in which the cell vertices are defined by integral values of latitude (φ) and 

longitude (λ), with a small adjustment for the mean latitude. The iterations produce a table of u, v 

coordinates for the bounding vertices of each cell; i.e., we have a one-to-one mapping    (φ, λ) —> (u, 

v). Using double bivariate interpolation, a map projection plotting program, and a magnetic tape 

containing an outline of the United States, a complete cartogram can be plotted (see Figure 1). On this 

map we define a set of compact cells, hexagons, in u, v coordinates. Another program computes the 

inversion  (u, v) —> (φ, λ) and this allows us to map the hexagons back onto the regular United States 

map. Each cell now contains an equal number of people, and this result is exact to the extent that the 

iterations have converged. It is obviously not valid in the oceanic areas, where some population has 

been allocated for aesthetic reasons. 

 The southern portion of the state of Michigan has been used for a second example. The requirement 

was to obtain nineteen political districts of equal population, without splitting any of the counties. Three 

counties already contained more than one-nineteenth of the population each, so that the exact solution 

space was a null set, which is not of great concern in illustrating the method. The diagram shown is the 

result of only eight iterations, and the county sizes are thus not yet exactly proportional to their 

populations (see Figure 2). This result could be improved by further iterations. Now any proposed plan 

of districts might be evaluated visually by the drawing of boundaries on this map. Alternately, the 

manual construction of districting plans might be undertaken directly on such maps, with the results 

later transferred to more conventional maps. Figure 3 illustrates this process, which of course is exactly 

equivalent to the inversion procedure demonstrated above for the United States using hexagons. First, 

a square grid is placed over the cartogram. Since the required number of districts (19) is prime, a grid 

of twenty cells has been used. If we could do away with the county boundaries the regular lattice would 

in fact provide a serviceable set of districts. Since we cannot, by the assumptions of the problem, get 

rid of the county boundaries, let us consider the grid as suggestive of what the final appearance of the 

districts should be. More precisely, let us attempt to find a set of districts the boundaries of which 

depart as little as possible from the grid. “As little as possible” can be taken in the least squares sense, 

meaning that some measure of mismatch, e.g. the area between the boundaries of the districts and the 

edges of the cells, must be minimized. A formal solution of the problem stated in this manner does not 

 

  



seem easier than the initial problem. Visually and heuristically we begin by attempting to match the 

edge of the grid with the edge of the map. (The map can be made to fit exactly into a rectangle of the 

proper proportions, but this has not been done in the example.) Now pick those county lines that fall 

near grid lines, and do a lot of fudging to obtain the requisite number of districts  (19 in the present 

instance — recalling that one of the counties is already bigger than three optimal districts and that we 

do not allow splitting of counties, by our assumptions). Finally transfer the lines back to the original 

map. The mean percentage error of the districting on this first attempt is 44.6%. This result is atrocious, 

even though most of the error must, at least in this instance, be attributed to the initial conditions of the 

problem. 

 As a third example, assume that the population density of a city can be described to an arbitrary 

degree of accuracy by a mathematical equation, and that the first term in such an expansion (see 

Tobler 1969) is D = f(r) = 6P(r - R)2/πR4, where 

D = number of persons per square kilometer 

P = total population 

r = distance in kilometers from the center of town 

                     R = 0.035P0.44, the radius of the town 

                     π = 3.14159. 

In this “parabolic” town, densities do not vary with direction, so that a natural, not necessarily optimal, 

solution to the defining differential equation in polar coordinates (r’, θ’) is given by  

r’ = [P/π (3r4/R4 -  8r3/R3  + 6r2/R2 )]1/2 , 

                                                             θ’ = θ. 

Figure 4 shows this transformation applied to a simple street map of the city of Ann Arbor, whose 

population is 100,000. This population cartogram may be used as were the previous maps if one keeps 

in mind the several approximations that were invoked during its construction. The polar coordinate form 

of solution is especially advantageous when pie-shaped districts are specified by the legal system.  

 The foregoing three examples demonstrate application of a continuous transformation to a districting 

problem with data given for a cellular lattice, for irregular polygons, and by an approximating equation, 

at national, regional, and local scales. A definite improvement in accuracy and especially in 

computational speed would be achieved if an analytical solution were available for the system of 

differential equations. 
 

1 Annals, New York Academy of Sciences, Vol 219 (1973), pp. 215-220. 
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FIGURE 1. The left column pertains to the usual type of map; the right column, to the population 

cartogram. The cartogram has converged to 68% of its desired accuracy after 99 iterations. Top row: 

one degree latitude and longitude graticule for the secant plate carée map projection and for the 

cartogram, respectively. Middle row: maps corresponding to the above. Bottom row: compact regions of 

equal population for each of the two maps. 

 

 

 

  



FIGURE 2. Southern Michigan: normal county map (left) and 1970 population cartogram after eight 

iterations. 

 

FIGURE 3. Districting on a cartogram. From left to right: approximation by a regular grid, 

accommodation to the required boundaries, and transfer to the original map. {The halftone lines on the 

maps did not reproduce well} 

 

 

 

 

 

  



 

FIGURE 4. Left: conventional map of Ann Arbor. Right: population cartogram of Ann Arbor. 
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