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. . l Clearly, then, it may be desirable to limit the number of classes to that number which users

The SClCCthn Of ClaSS lIltCI'Va S aan confidently discriminate. Dobson assumed that this must almays be desirable, because he
K | mades further, unstated assumption that every map should permit its readers to identify exactly

IAN S. EVANS k- the class to which each individual symbol belongs. Dobson’s views on the desirability of limiting

e member of classes were firmly supported by Monmonier (1973), and similar views, which
e dxpressed by Robinson and Sale (1969) and by Jenks and Caspall (1971), appear to be
‘the majority of cartographers. Yet looking at each symbol individually and comparing it
legend implies usage of the map principally as a data storage medium, as a ‘spatial
%3 f this is the aim, it is much more efficient to write the actual numbers on the face of the
" Wickinson, 1973). As Dobson (1974, P- 46) himself stated in another context, “The carto-

does not expect the dot-map viewer to.count dots (Heaven forbid), but to see general
I
. . : i . 1
techniques of class selection, recent work has widened the choice available and extended the opportumty to p

o 3 More important map uses (sec Bertin’s ( 1975) ‘maps to be seen’ as opposed to ‘maps to be
duindshi:: ems of class intervals, apart from those fixed exogenously or in arbitrary fashion, are C(I:;Ziilﬁg.;::cls‘ . 8d Jiinclude (i) perception of the overall spatial pattern of a map; (i) comparing patterns of
or iemlz}';ﬂ the later being recommended here. Scale tra{;srmmgogssl;:t;?z::'::d[s:si?::‘gegcsted that class interl ‘ maps; and (iii) assessing contrasts between adjacent places. For the latter, in particular,
tions are important and sre required for Fis of rlt‘o;fti:iixﬁ:::::c; dis¥rihuxion, but should be selected sccording to -p¥¥ychological theory for absolute levels is inappropriate. Instead, we should consider the
Shouhlil e be:F:mzcici(it‘rrilbr::?;::nl:srd:e‘:t‘::;u;aredistrihutions, equal division of the range i;apé?"t’l’i::::;nf:‘;;‘;‘: . perceptible differences’ between contiguous stimuli; in this case, the number of relative
unimodal distributons, intervals related to the standard deviation 1(1('mha szali;::::h‘::‘t:;c;s increases, Techniques tlg which can be discriminated is much greater (Haber and Hershenson, 1973, p. 106). It is
and for J-shaped distributions, geometric progressions to :asse:i‘:: and for dealing with the special characteristios i walikely that comparing individual symbols with: the legend is an efficient method for any of
given for calibrating geometric progressions relative to the ' L these gims, or that it is the method actually used by the map reader. Hence we should perhaps
percentages. [ $ive more weight to the general fidelity of symbolization, rather than to identifying individual

bol classes. In any case, a legend for well-designed symbolism should be almost redundant:
the state in Marx’s theoretical view, it should wither away.
If a map is intended to convey information on spatial structures, on situations rather than
- e sites, why should it not have the near-infinite gradations of a photograph, as Tobler (1973)
g swggested ? Dobson (1973) did not reply to this point, but presumably he felt that simplification
: ad highlighting are necessary. In other words, we have a replay of the orthophotomaps versus
I gymbolized maps debate (Radlinski, 1968; Hill, 1974). The conclusion of that dcbate seems to be
|t while precise classification, symbolization and empbhasis are useful for some features, such
i sroads, the infinite gradations of the photograph should be retained for complex areas of vegeta-

ton and different densities of built-up area.

Graded symbolism is most clearly appropriate where the distribution 1o be mapped falls
o ‘nétural’ classes separated by clear breaks, and less so where there is a gradation from onc
. level to another. It is important, then, to establish whether the statistical frequency distribution
. continuous or significantly multimodal. In most cases (e.g. Pringle, 1976) it is continuous,
. Therefore, the grouping of data into a small number of classes is undesirable except in the rare
emes where it is important for the rcader to discern reliably into which class each individual
smbol falls. Reducing the number of classes achieves simplification at the cxpense of loss of
wxeful detail, especially local contrasts. Generalization of a map in this way is crude and uneven
ompared with weighted spatial smoothing (Tobler, 1969); it increascs grouping error and
diorts differences. On the whole, proportional symbolization should he preferred to graded.

The reason why cartographers have almost always used.a small number of classes may,
Bowever, have been technical rather than philosophical or perceptual. With manual cartography
tis easier to draw, for example, eight graded sizes of circle, so that the compass need be set only
tght times, than-to reset the corhpass for every symbol (Dickinson, 1973, p. 45). For line shading,
18 easiest manually to use a small number of line spacings coinciding with divisions marked on
 aruler. Pre-printed stick-down symbols also come in a small number of sizes,

’ Tobler (1973) pointed out that in automated cartography this constraint is almost removed,
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ABSTRACT. The selection of class intervals, which can strongly affect the visual impression gw:lnd}g maser{lvne;:, ti; ;:‘\:rr 7
totally anllrchic branch of cartography. While practising cartographers have barely accustome: N

An analysis of maps prepared by authors in various academig discxpllmEs lelsttlg ?:;)::" {
i - 1 ' he selection of class intervals. Eviden : .
rational or standardized procedures for the select : ey
inspirati i i dices, legerdemain and predeterm i
inspiration, revelation, mystical hunches, prejudices, e 16
of \[:/hat the class intervals should be have characterized the work O}E.n;lnst"mapﬁ;:rties
Apparently many authors believe that maps are an art—fo;'m w 12 a olv;fo)
admissible in verbal or tabular presentation. (Jenks and Coulson, 1963, p.

TO GROUP OR NOT TO GROUP?

. . W
THE impression conveyed by a map is a function not only off (ri'eallty, but allso g;:,aht?c %L;:i
iti i ’ i Is or grouping of data, map scale,
definition of variables mapped, class intervals ) scale, graphic c¢
i ler. The effects of most of thesé factors are poorly und )
and map perception by the reac ; ' o e D e
icle ¢ the sclection of class intervals, a top
the present article concentrates upon e pon caﬂogmph
1 . hers. In the first place, although
singular lack of agreement among cartograp ; tograph
treft quantitative data by grouping them into a small_nu‘ml_)crh;)f classes, some ‘heretics
' > such grouping is desirable. o
Tobler (1 do not even agree that suc ‘ bt
Th(e 2Z$31ting debate takes us to the heart of the ph1!05(l)§hg of (Earmg)rap:);,na;llleépt ot
i 1 ; is implicit > often than it is explicit. Dobson (1973), 1 :
which philosophy is implicit more o . g,
f / . ry of the rationale of groupings
f Tobler’s heresy, provided a useful summa le of ¢ !
T e the i ’ confidently identify only
i terms the human eye can

This starts from the fact that in absolute _ n o  Jenend uoon e
“shadi 1 mbol, Flow small this number 1s must depe :
small number of shadings or sizes of sym : X IS e
i ange of sy ilable, upon the spatial context of the symbo smoothe -
constraints on range of symbols available, ! the sy e

ness of variability portrayed, and upon human factnrs.l(:cneralfl_yul;’l;s tdkff::,ras’;;\i,:iq e g:

' ' - certainly it would rarcly exceed ten or fall below - s but ¢
(Jenks and Knos, 1961); certainly 1 ‘ ceed . s
nanifestati : | capacity’ in the perception o g :
manifestation of the phenomenon of ‘channel ) erc ' pvand
stimulus (Miller, 1956). Hunt (1968) used a series of eight very dngtmct sl}:e.xdl;ngs, zriftil;it X ztr;
i)attcrn as well as darkness Geddes (1942) presented twelve shadings which are )

unambiguous sequence.
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for it is very easy for a computer program to fix a density of shading or a size for each symbql,
iccording to some rule of proportionality. This change is important, but constraints remain 4
because most plotting devices work in fixed increments. For many graph plotters, the increment 3
is 0-o1 in. Hence if the smallest square to be drawn has a side of 0-03 in, and the largest, 0-20 in, §
only eighteen sizes are available. (This is doubled where the increment is 0-005 in, which is
now becoming common.) The Dresser laser plotter has 16 intensities of grey available for shading 4
(Rhind, 1974): although adjacent levels cannot usually be discriminated by the human ey, §
especially on a complex map where the context varies, the number available is sufficiently small
that the class-interval system is very important. In fact, even where very many gradations are §
possible (1024 on the HRD-1 laser plotter), it is still necessary to decide the appropriate scale

the number of classes required.

! NUMBER OF CLASSES
If we decide not to represent a surface by continuous gradations, we must decide how many 1§
classes are to be used and on what criteria class boundaries are to be selected. The common
situation involves representing a surface by a series of graded shadings, from light to dark, but3
similar considerations apply to other types of quantitative symbolization, such as thickness of §
line or area of square.

Deciding on the number of classes is a subjective stage, suffering from a spill-over of the
emotional ‘graded versus proportional symbol’ debate discussed above. With more than ten?
classes it is difficult for the reader to be sure to which class a particular symbol belongs, hence ;
one might as well use as many classes as is technically feasible and approach proportional §
symbolization. With five classes or fewer, class identification should be unambiguous, but the
information communicated thereby may be less than an approximate identification on a sixteen- §
level scale can provide. . _

Within the range four to ten classes, a decision should be influenced by the intended
audience, the technical means available, and the spatial pactern of the distribution. A simple,
clear-cut map with four or five classes may be better for an unsophisticated audience, inexperi-
enced at reading graphics. Trained eyes may appreciate the extra information which seven or §
eight classes portray (Schultz, 1961). Poor mapping tools (e.g. the standard set of line printer
characters) or poor reproduction facilities may degrade a complex image, and these constraints
suggest use of relatively few classes. A smooth surface with highly positive spatial autocorrelation 3
facilitates sub-division into more classes, each of which occupies a band wide enough for it to be
identified and to be followed for some distance. T.ikewise, in patterns of point or line symbals
where nearby symbols are similar in value, nearly similar symbols are likely to be either close to
each other, or close to comparable symbols forming a continuous band; this facilitates visual §&
discrimination. Finally, data accuracy should not be allowed to influence the decision, for ;
inaccuracy can be used as an argument either for few classes, reducing the chance of being in the
wrong class, or for many classes, reducing the portrayed magnitude of error when a measurement
does fall in the wrong class.

A CLASSIFICATION OF CLASS-INTERVAL SYSTEMS

So many systems of class intervals have been proposed that it is useful to propose a new two-level
classification, which distinguishes four distinct approaches.

1. 1 EXOGENOQUS, fixed in relation to meaningful threshold values relevant to but not derived
from the data to he mapped, e.g. a sex ratio of 1 or a critical population density threshold.
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2.ii ARBITRARY, usually round numbers of no particular significance. Often the step size is

constant in one part of the scale and then changes, e.g. s, 10, 20, 30, 40, 80, 120, thus
completely distorting the underlying ‘statistical surface’. Sometimes such intervals may be
roughly rounded approximations to true scrial progressions (Mackay, 1463)

t 3. IDIOGRAPIIIC, affected by specific details of the data set mapped. This can be subdivided

mto: .

it Multimodal, separated by ‘natural breaks’ where frequency is lower.

iv Multi-step, subdivided by ‘natural breaks’ where the gradient of a cumulated frequency
plot changes. This is often crroneously labelled ‘clinographic’, but the cumulated area or
number plot is more analogous to the hypsometric curve, and Clarke (1966) has clearly
indicated that this does not portray real surface gradients.

v Contiguity-biased, classified so as to maximize the extent and minimize the number of
regions with a given shading class. A

vi Correlation-biased, classified so as to maximize similarity to a given map.

vii Percentile (quantile) classes which contain equal numbers of spatial divisions, or necar-equal
areas. (‘Quantile’ is the more general term, but tends to be confused with ‘quartile’ and
‘quintile’.)

viii Nested-means class limits; a frequency distribution is balanced about its mean, which forms
the most obvious point of division to give two classes; each of these classes may be sub-
divided at its own mean; and so on, giving 2, 4, 8, 16, . . ., 2" classes (Scripter, 1970)

F 4. SERIAL, with limits in a definite mathematical relation to each other, fixed in relation to

- statistics for the overall frequency distribution such as median, mean, and standard deviation
or range, but not to individual details of the distribution. Type viii above is marginal to 3.
and 4. in that the two-class version fulfils this definition but the higher-order means calcu-
lated to permit further sub-division are increasingly atfected by details, and the number of
fitted parameters-is only one less than the number of classes. The other sub-types have
class widths ‘which form equal steps on some scale, except for standard deviations which
have open-ended highest and lowest classes, arid arithmetic progressions which mix equal-
interval and progressive concepts and are perhaps open to objection on that basis.

ix Normal percentiles, with class limits that subdivide a normal distribution of appropriate

standard deviation into classes equal in frequency (Armstrong, 196g). This is marginal to 3.

and 4. in being the only ‘serial’ system with class limits which do not form a straightforward

numerical series. Such classes.vary in width in relation to their separation from the mean,
but are symmetrical on cither side of the mean. This system should not be confused (as in

Chang, 1974) with the standard-deviation-hased system x, which also works best for a

normal distribution. It relates to ihe percentile system, but i not idiographic since it is

calibrated orly in relation to mean and standard deviation of the data; its ‘percentiles’ relate
to the theoretical normal frequency distribution. The more the observed distribution differs
from the normal, the more unequal will the frequencies of different classes become.

Standard deviation, with class width defined as a proportion of the standard deviation. A

standard deviation is simply the square root of the mean of squared deviations around the

mean: it is statistically the most useful measure of dispersion (spread) of a set of measure-

ments. As in ix, class intervals are centred on the mean, which is a class midpoint if the

number of classes is odd and a class boundary if the number is even; the highest and lowest

classes are necessarily open-énded.

vi liqual arithmetic intervals, with no variation in class width. These may be (a) round num-
bers, or (b) equal divisions of the arithmetic range.

e



102 TAN S.EVANS

xii Fqual intervals on a reciprocal scale (Jenks and Coulson, 1963). This system cannot be

applied if any zero values occur.

xiii F.qual intervals on trigonometric scales (sine, cosine, tangent, their reciprocals or their

corresponding angles). v
xiv Geometric progressions of class width. The midth of each (higher) class is a constant factor
times the width of the preceding class.

xv Arithmetic progressions, with ¢lass width increasing by a constant amount in comparison”
to the next lower class. Tf this amount is 2 and the first class is o to 1, the limits of N classes

r N
are 0,1, 4,9,10,25,..., Y (1+2(- 1)
« t

xvi Curvilinear progressions, where a plot of logarithm of class limit against logarithm of cls
number forms a smooth curve. Mackay (1963) calibrated these in terms of the upper a
lower limits of the lowest class, the lowest limit of the highest class, and the number o

classes, and he suggested that the resulting series approximated to current cartographic
practice. Class width can either increase or decrease upward, but the rate of change of width
decreases upward in all his examples. These series scem to be even more general and}
flexible than geometric progressions, but they do leave very many free choices to the$

| cartographer, who has little guide to making precise decisions.

It is now possible fo consider the relative merits of these sixteen systems, first for a single map, 3

and then for several maps which are to be compared. Measures of the accuracy of class interval
systers may then be reviewed.

SELECTING CLASS INTERVALS FOR A SINGLE MAP

Fxogenous class limits will be used in the few instances where they are available, but arbitrary 38
y limits forming no consistent scries are indefensible and should never be used. For most maps, 3}
' then, it is necessary to choose between the various idiographic and serial alternatives. Most 1
+ systems make some use of the aspatial frequency distributions of values (but in very different 3
ways); different frequency distributions suggest different class interval systems. It will be seen 3

that there is little relation between the suitability of a system and its current popularity.

Systems iii and iv based on various sorts of ‘natural breaks’ are widely reccommended in the °
recent literature (Mackay, 1955; Dickinson, 1973, pp. 87-91). They are excmplified by Davis 3
(1974, p. 71) andrdetailed by Robinson and Sale (1969, p. 16g). System iii has been automated

by Monmonier (1972, 1973) using principal components, and by Jenks and Caspall (1971) using
centroid linkage (see also Dickinson, 1973, fig. 125B). Early proponents of iii included Alexander
and Zahorchak (1943), who suggested that minima in the frequency distribution would provide
class limits separating clusters of similar areas. ‘They argued that such limits would be significant

- in themselves, as well as providing simpler spatial boundaries because they pass near fewer of
the areas. The force of their argument is however greatly reduced by the difhculty, which they
admitted, that a frequeney distribution carries no information about spatial pattern. Hence the
arcas which make a minor peak in the histogram may be scattered over the map, in which case
the boundaries based on frequency minima will be no simpler than any others. Jones (1930, p.

, 181) actually defined his hreaks as major steps in the statistical surface, but these steps were high
enough to leave plenty of scope for subjective judgement in defining precise class limits for
1sopleths.

The greatest defect of the ‘natural breaks” approach lies in attributing ‘significance’ to very
minor troughs in the histogram. Usually —as in Alexander and Zahorchak’s example of county
population density - these are just the minor oscillations to be cxpected in any finely divided
histogram. ‘They arc unlikely to be replicated either in different regions or at different times, hence
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they are ‘significant’ neither in the statistical nor in the everyday sense of the word. Ifa distribu-
tion were demonstrated to be significantly multimodal, that is to consist of a mixture of samples
from qualitatively different populations, this approach would be justificd, but 1 know of no
artographic example where this has been demonstrated. Jenks and Coulson (1963, p. 125) found
that ‘more often than not, clear natural break classes do not occur, and subjective judgements
based on frequency graphs vary greatly from cartographer to cartographer’. It is usually possible
to find apparent breaks, but these are often the result of small sample size and their significance
should not be exaggerated. "

System iv involves pairs of contours on either side of minima or maxima in the frequency
distribution, or at breaks in cumulated frequency curves. This supposedly divides the cumulated
distribution into a series of ‘treads’ and ‘risers’. Again, breaks in the frequency distribution are
emphasized, but with the added disadvantage that twice as many contours, or levels of symboliza-
tion, are required. In theory, this ‘doubling up’ of the class boundaries emphasizes the stepped
rature of the frequency distribution-—if the spatial distribution is also stepped. Neither of these
two ultra-idiographic approaches, iii and iv, should ever be used in quantitative mapping, unless
significant multimodality has been demonstrated statistically.

The scope for increasing the contiguity effect in shading (system v) is limited unless regional
classes with overlapping statistical intervals are admitted. It seems better not to distort the map
in this way, but to let the degree of contiguity speak for itself. Monmonier’s (1972) pioneer
results gave very little improvement in contiguity, at the expense of considerable declines in
intra-class homogeneity. An alternative and better way of achieving a simpler spatial pattern is
to apply weighted spatial averaging (Tobler, 1969). Monmonier’s more recent innovation (1975)
of automating the selection of class intervals so as to maximize the apparent correlation between
maps (system vi) is a more dangerous and indeed sinister weapon to place in the hands of
geographers and politicians who know what results they want.

Percentile systems of subdividing frequency distributions are very useful in ensuring equal
representation for each class. Of coutse, if the spatial divisions which provide the units of the
histograms vary much in arei, as in Hunt (1968), the actual areas shaded, and hence their
visual impacts, will vary considerably from class to class. This can be avoided if the histogram is
weighted by arca (Mackay, 19s5) and percentiles are chosen which, as closcly as the size of
spatial divisions allows, provide an equal map area in each class. When percentiles of data points
are chosen prior to isopleth or isarithm mapping by interpolation (e.g. with SYMAP), the areas
within each class often vary considerably. In this case, equality of class arcas can be achieved by
iteration.

It can be argued that an areal percentile map makes maximum use of the number of distinct
symbols available. On the other hand, the map reader may wish to compare maps not on the
basis of equal divisions of arca or of numbers of the irregular divisions for which data are avail-
able, but perhaps of equal divisions of the population.

Percentile-based classes are independent of monotonic transformations (c.g. logarithmic or
reciprocal, where applicable) of the measurement scale add so they may be preferred when we
are unsure of the quantitative basis of the scale (nor of the accuracy of its measurement, but
of its status as an interval or ratio scale). Their main disadvantage is that class intervals vary
wregularly in different parts of the measurement scale and between maps of the same variable
for different arcas or times. This degrades ratio or interval scales to ordinal scales, and hinders
comparison between areas or between times. Furthermore, a percentile-based map provides no
imformation whatsoever about the frequency distribution: this could equally well be peaked,
rectangular or bimodal. Hence it becomes absolutely incumbent on the cartographer to present
a histogram alongside such a map, and to mark the class boundaries upon it. ‘I'his removes the

i
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itter objection and facilitates interpretation in relation to the measurement scale, but it does
othing to aid map comparison. Furthermore, pereentile classes necessitate very careful rcading
f the map Iegend (Schulez, 1961).

Unlike systems ii to vi, percentile classes are replicable between cartographers. Scripter's
1970) recent innovation of the nested-mean system viit is equally objective, and more attractive

IAN S.EVANS

1 that it balances the desirable property of equal numbers per class against another desirable 38
roperty, that of equal class widihs. Since means minimize second moments (sums of squared J&:

eviations), they are the balancing points of the part of the scale which they subdivide, with

espect to both magnitude and frequency. Class intervals thus defined are narrow in the modal 3
arts of a frequency distribution and broad in the tils. Fxtreme values are not allowed to
ominate, but they do influence the positions of means of various orders so that the less closely -

paced the values ina given magnitude range, the broader the classes. For a rectangular frequency
istribution, nested means approximate the equal-interval or percentile solutions; {for a normal
ne, they approximate a standard deviation basis; and for a J-shaped, a geometric progression.
lence nested means provide the most robust, generally applicable, replicable yet inflexible class
aterval system. Compared with the three systems just mentioned, nested means have the dis-
dvantage of not forming a numerical series independent of the data, and not permitting numbers
f classes other than 2™,

Few examples are as yet available of Armistrong’s (1909) standardized class intervals (system
(), based on pereentiles of the normal probability distribution, For data which follow this
istribution, normal percentiles are preferable to true percentiles in being uninfluenced by minor
ctails of the frequency distribution. Hence they escape the label ‘idiographic’, although the
umerical series which they form is a complex one. Like the standard deviation system, this
vstem is unsuitable for markedly non-normai frequency distributions, which it makes apparent
hrough uncqual class frequencies. Unlike Seripter, Armstrong failed 1o mention the desirability
{ transforming the measurement scale to give a more nearly normal distribution (Fvans,
atterall and Rhind, 1975), but such transformation is much more necessary here and for system
~than for nested means.

The particular examples mapped by Armstrong (196¢) are mortality ratios, for which there
s no theoretical expectation of a normal distribution. His fisures 4 and 5 confuse the issue in
eing light” and “dark’ respectively, not because of positive and negative skewness, but because
hey are based on an overall, weighted mean rate, rather than the more appropriate mean of the
atios mapped. The standard deviation of these ratios is uscd, and clearly the frequency distribu-
ion of the same ratios is the relevant one for such a map (on which the insignificant ratios should
ot be mapped; Choynowski, 195¢).

For frequency distributions which are approximately normal, or fairly symmetrical with a
ronounced mode near the mean, the standard-deviation system x is best. It has the edge over
ystem ix in that its internal intervals are equal. Tt should be applied also to skewed unimodal
listributions which can be transformed to symmetrical form, for example by taking logarithms,
osines or reciprocals. Tn addition to reference to the mean, a standard deviation basis has the
dvantage, compared with a range basis, of an open-ended class for each tail of the frequency
hstribution. The extension of these classes permits greater discrimination near the mode.

Usc of a standard deviation basis does not imply a chass interval of one standard deviation,
vhich 35 100 coarse if more than four classes are employed. Table | shows the proportions of a
wrimal distribution which fall into cach of 5, 6 or 7 classes, for different widths of class. Fora
~class division, classes 0-5 to 00 standard-deviations wide are occupicd almost equally, and the
esult approaches a pereentile-based solution. This excessive pooling in the broad, open-ended
ail classes tends to suppress the bell-shaped nature of the frequency distribution. On the other

3
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TABLE I

Percentage of values in a normal distribution falling into cach class, for differcnt (Ia.fx widths expressed as proportions of
wandard deviation. Class limits are shown in brackets in units of standard deviation from the mean. Based on tables of the
normal distribution

Class width

(standard Class
deviations) 1 2 3 4 5 6 7
{1} Four classes
11 136 (—11) 364 (00) 364 (H1a) 136
1o 159 (=10} 3¢v (o0) 341 (110) 159
09 184 (—o0¢) 306 (00) 306 (]oy) 18-4
o8 212 (—o8) 288 (o0) 288 ({o8) 212
o7 242 (—o7) 258 (00) 258 (+Ho7) 242
oh 274 (—o06) 226 (00) 226 (400) 274
03 309 (—o5) 191 (00) 19T (4 05) 3oy
(b) Frie classes
" 50 (—165) 242 (—o053) 418 ({055 242 (4163 50
to 67 (—r35) 241 (—o3) 383 (to3) 241 (f15) 07
09 88 (—1°35) 238 (—04s) 347 (Ho45) 238 (+135) 838
o8 11-5 (—12) 229 (—o04) 311 (log4) 2279 (+12) 1175
o7 147 (—105) 216 (~035) 274 (H035) 206 (41°05) 147
o 184 (—o9) 198 (=03 236 (+03) 198 (tov) 184
o5 227 (—075) 1779 (—o023) 1907 (F+o25) 1779 (-ho75) 227
{¢) Siv clusses
11 14 (—22) 122 (11} 304 (00) 30-4 (411 12z (f22) 1y
o 23 (—20) 136 (=10 341 (00) 341 (110) 136 (i20) 23
oq 3o (=) g8 (o) b (000) 316 (1o9g) 148 (i18) 36
o8 55 (—106) 157 (—o8) 288 (00) 288 (lok) 157 (1rh) 55
o7 81 (—14) 161 (—o7) 258 (00) 258 (407 161 (+eg) 81
oh 15 (—12) 159 (—o06) 226 (00} 226 (to06) 159 (+12) 18°§
o5 159 (—10) 150 (=035} 191 (o0) 191 (}o§) 150 (+710) 159
Seven classes
(&)Is'l 0035 (—33) 134 (—22) 1238 (—11) 7285 (417} 12218 (-F22) 134 (+33) o005
e 013 (—30) 215 (—20) 1359 (—ro) 6826 (}10) 1359 (‘t20) 215 (}-30) O'l_}
09 035 (—27) 324 (—1%) 1482 (—oq) 6318 (1o0) 1482 (11r8) 324 (127 o35
o8 082 (—24) 466 (—16) 1571 (—o8) 5762 (108) 1571 (-1 1-6) 466 (429) o8Bz
o7 179 (—21) 629 (—r1y) 16012 (—o7) 51060 (o7 1612 (+1g) 629 (+2-|‘) 179
ob 359 (—18) 792 (=12 1502 (—06) 45714 (f00) 15092 (+12) 792 (+18) ?:3
o5 068 (—15) 919 (—10) 1498 (—05) 3830 (Fo3) 1498 (410 919 (+15) 6068
o‘:; 151 (—12) ¢68 (—o8) 1327 (—o4) 3ro8 (lod) 1327 (+08) ¢68 (+12) 1158

hand, classes larger than one standard deviation leave few measurements to the tail classes, which
" gre thus under-utilized. Hence an intermediate value, say 07 or o8 standard deviations, will

wsually be preferable. 1t may eventually be possible to standardize this factor, for a given number
of classes.

The standard deviation system is less suitable for large numbers of classes (say twenty)
because frequencies may then be low in classes near the tails. _ .

For a rectangular frequency distribution equal divisions of the range (system xi (D)) give
excellent results, comparable to the use of percentiles but witho.ut the minor pCl‘tllI'h;ll.l()n.S of
class width. (Minor perturbations of class frequency are less objectionable.) Rectangular distribu-
tions are, however, rarely encountered, and occasions where range sub-division is the best
method are correspondingly rare. For normal or skewed distributions, most of the measuremenis



TABLE II

Summary af properties of stx systems for class intervals

Are ‘round

numbers’ class
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fall into one or two of the range sub-divisions, while classes covering tails of the distribution are
hardly used. The range-based technique is easily operationalized, and hence it is the ‘default’
option used by many computer programs, unless the user intervenes. The adverse results of such
cartographic carclessness have been noted by Isu and Porter (1971). Furthermore, the example
they quote gives class limits to five significant digits! In the rare cases where system xi is appro-
priate, it might be better (Schultz, 1961) to use rounded numbers (system xi (a)), at the expense
of incomplete use of the highest and perhaps the lowest class.

I:qual-interval classes on the various scales mentioned in systems xii and xiii arc rarely used,
but would be appropriate to frequency distributions approximately rectangular on the scale in
question. If they were unimodal and near-symmetric on the same scale, system x would make
more cconomic use of the classes available. Standard-deviation class limits are also cqually spaced,
but the open-ended ¢xtreme classes are useful for the tails of a distribution.

Geometric progressions of class widths (system xiv) are extremely uscful for distributions
where frequency declines continuously with increasing magnitude (‘J-shaped’ distributions). They
are also very flexible in that different-sized lowest classes and different bases of the progression
e be used. Since they have not reccived detailed cartographic attention before, they are
considered at length below. In view of the flexibility of gcometric progressions, with class width
changing slowly or rapidly depending on the base of the geometric progression, arithmetic
progressions appear supcrfluous: they seem to have no particular rationale. Mackay’s (1963)
system xvi seems unnecessarily complex, at least until geometric progressions have been fully
explored and found wanting.

Implicit in the above discussion is the principle that if serial class-interval systems arc
sclected carefully to suit the overall shape of a frequency distribution, there is no need to forgo
their advantages for the irregularity of idiographic systems. Any irregular system of class limits
distorts the form of the statistical surface (Robinson and Sale, 1969, p. 166). [diographic systems
(cspecially iii) take quantitative data and degrade them into grouped ordinal data, emphasizing
differences between groups rather than quantitative differences on a continuous scale.

Table TI compares the suitability of six important class-interval systems, including two
idiographic ones. It is suggested on the basis of the preceding discussion that intervals based on
standard deviation are best for normal frequency distributions, equal-intervals for rectangular,
and geometric progressions for J-shaped. Most distributions which do not approximate to any
of these forms can be transformed to one of them. Significantly multimodal distributions are
an exception: class limits must be located in the intervening breaks and if there are more than
two modes this makes the use of serial intervals fraught with difficulty.

Nested means are attractive because of their robustness and because the 1elative frequency
of each class provides the map reader with clues to the shape of frequericy distribution. There is,
however, no particular advantage in using a single system when the limits are irregular and non-
serial; the combination proposed above seems preferable to nested means alone. Percentiles have
been selected by cartographers wishing to play safe and make sure that some spatial differentia-
tion was portrayed. With the use of computers there is no excusc for ignoring the frequency

distribution and Hunt’s (1968, p. 3) practical reasons for using percentiles, rather than the
standard deviation basis which he would have preferred, no longer apply.

CLASS INTERVALS AND MAP COMPARISON

A number of class-interval systems can be claimed to provide comparison between maps of the
same variable for different areas or times, or between maps of different variables for the same

- area. Percentile classes permit us to compare equal divisions of the frequency distribution.

Nested means provide comparably defined benchmarks in each distribution. Standard-deviation
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rmit us to compare dispersion-standardized deviations from respective means. ‘Natural
ss himits would fall in comparable positions, in the unlikely event of their having any
rificance. Arbitrary round-number class limits can be repeated for difterent maps of any
n the same units, although some classes may be vacant on some maps.

vital question is why are the maps being compared. 1t may be impossible to optimize
fication on each map and at the same time facilitate all possible modes of map compari-
aps of different times are to be compared to reveal changes in absolute terms, or if maps
nt variables in the same units are to be compared for differences in absolute terms, then
ytial that exactly the same class limits should be used, and cach individual class must be
ed identically on all maps. In this case, none of the data-calibrated systems can be used
and there are two alternatives: (a) use round-number class limits equally spaced on an
ate scale or perhaps a geometric progression; or (b) apply a data-calibrated system to the
data of the two or more periods or variables. In cither case one must tolerate the fact
vidual maps are in no way optimized for the data portrayed. Optimum usc is not made of
ber of classes available, and, in fact, the number of classes may vary from map to map:
cferable to varying the class limits.

vever, there are further motives for map comparison: a major one 1s, for a given area, to
far the spatial pattern of one variable has changed over time, or how similar are the
atterns of different variables. Here the use of identical class limits would actually be a
¢, because these would interact with differences in mean and i standard deviation
sroduce apparent differences even when the spatial patterns were identical. Hence, such
son requires that class intervals should be related to the data in a standard way, and
qmbers of classes should be used. The above reasons justifying the use of a percentile,
rean, standard-deviation, or natural-break basis arc applicable. I.qual division of the
| range would be inefficient because the range is an unstable statistic, and inappropriate
it is unrelated to the three principal measures of central tendency.

cther variables with different-shaped frequency distributions are best compared through
les, nested means or appropriate data-calibrated scrial systems is a debatable question;
entation would be useful. Although Olson (1971, 1972a) suggested that percentile classes
st in preserving the rank correlation between pairs of maps (compared with correlation
the data scts), her only reasonable comparison was for four-class maps. The results
n her (1972a) figure 3 indicate that sampling variation of rank correlation is least with
rcans, stightly worse for standard deviations (limits at —1,0and +15.D.), and consider-
rse for quantiles. Three-class and five-class standard-deviation systems appeared worse
rresponding percentile divisions because Olson sclected very inefficient class limits:
(, +1 and +2 standard deviations, The central class, where obscrvations arc most
paced, was thus twice as wide as those adjacent to it, and contained some 68 per cent of
cvations: it should never be wider than the adjacent classes, for unimodal frequency
tions.
on (1972b) then compared similar class-interval systems for goo pairs of real demographic
s which were presumed to cover a range of deviations from normality in frequency distri-
Errors were greater than for simulated normal data, and percentile techniques were
that even two standard-deviation classes were better than (five) quintiles! For equal
s of classes, standard-deviation systems (cven as defined by Olson) were much better,
neans were intermediate. The use of deviations from expected rank correlation, rather
viations from average rank correlation, reduced the apparent merit of nested means for
o data also: this suggests that their portrayed correlations are biased as well as imprecise.
omparisons might be obtained by using systems from Table I with more nearly equal
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class frequencies: Olson’s existing results argue against percentiles, rather than for them. As
vet, considerations of map comparison provide no basis for modification of the recommendations
made at the end of the last section.

THE ACCURACY OF GRADED SYMBOLIZATION
Measures of the classification accuracy of maps have been proposed as means of selecting the
best class-interval system. Jenks and Caspall (1971) have made a serious attempt to measurce the
accuracy of graded choropleth maps, following the pioncer work of Jenks and Coulson (1963).
The latter measured error as
Ry R
Z;, M,

4

=t

(1)

where R; is the theoretical (complete) range of class 7, M; is its midpoint, and Z; is the mean of
the observations which fall into it. Thus the greater the difference between the reciprocals of
Ai, and Z,, the greater the class error: the summation of these errors is weighted by the class
range. Broad classes thus dominate the calculation, for no obvious reason. Though the results
do have some relation to map accuracy, they are peculiar in ignoring the dispersion of observa-
tions (around 7Z;) within cach class. Unfortunately, /) is the measure used by Chang (197.4) in
his class-interval selection program; it should now be apparent that it is not a suitable measure
of accuracy.

Jenks and Caspall (1971) distinguished accuracy in three map functions; tabular {(place-by-
place), overview (volumetric) and boundary.

The tabular accuracy index (TAT) scems an interesting and readily operated measure. It is
based on Jenks’s (1963) concept that a choropleth map implicitly represents each placein a given
class by the average value for all places in that class.

N n;
jgl kgl ij_Zj
TAI = 1 - 15— (2
3, % |am]
i=1k=1

where Z is the mean of all # observations, Zj is the mean of the #; observations in class j, Z,; is an
individual observation in class j, and N is the number of classes. ’

Unfortunately, as Jenks and Caspall pointed out (1971, p. 220), the map reader is not
usually given Z,. Despite their own recommendation, Jenks and Caspall did not even give 7, for
the numerous maps in the same article. The mean of observations in a class is therefore irrelevant
ro the valuc which a map reader is likcly to put on a class. The reader, since he is usually given
the class Hmits, is presumably most likely to visualize the class mid-point, M, though even this
involves him in a small mental calculation. Alternatively, he might envisage the places mapped
in a particular class as being spread evenly through the class, though he would not know in what
order they came. Use of M in place of Z; in the TAI would reduce the apparent accuracy of
classes where the observations clustered together but not around the class midpoint. This
prcsumably has implications for the apparent merits of different class-interval systems. All such
indices have been based on the original measurcment scalc; if it is appropriate to give less weight
to large differences in the tail of a skewed distribution, the index should be applied only afier a
transformation toward symmetry.

The overview accuracy index is simply an area-weighted version of the tabular; it relates
to the volumetric mismatch between the true three-dimensional model and the apparent one.
I'his does not seem to be a full solution to its authors’ apparent aim of measuring success in
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%
ing a synoptic view of the pattern, form or structure of the spatial distribution: indeed, '§
s unlikely that such a measure can be derived outside the context of map perception :§

he third index asks the reasonable question, to what extent do true contrasts between
ours remain apparent in a choropleth map. Unlike the T'AL the boundary accuracy index
would be diflicult to apply to point symbols, and impossible for isopleth maps. T.ike the
he BAT is based on mean values of observations per class, and the apparent difference
‘n neighbours is taken as the difference between these means for the two classes into
they fall, despite the fact that the map reader is unaware of such means. The sum of the
differences is divided by the sum of the p largest true differences, giving the BAL Again,
uld be improved by replacing 7 by M, in calculating apparent differences. Also, the BAI
s error due to very different neighbouring values being placed in the same class. So that
ms with different numbers of classes, and even different numbers of contrasting con-
s, coubd be compared more readily, it would be better to divide by the sum of @/l true
nces between neighbours, not just the p largest. This would give:

7 l ij-Mw"
¥ ze—z, |

3)

M., is the class midpoint appropriate to x, M, ; that appropriate to y, and the summations
over values of v and y which give contiguous pairs of symbols or spatial divisions.

ven after such improvements, however, the BAL is mislcading, because cases where the
't contrast exceeds the true contrast increase the accuracy index; surely they should
ssively decrease it. Tlence we arrive at a rather different “neighbour difference crror
(NDEI) which compares the apparent contrast with the true contrast, and standardizes
m of differences (positive or negative) by the sum of true contrasts;

| (M= My) ~(Ze—7,)]|

El =
P ¥¥[7,-7]

)

uch a boundary index is quite uscful in assessing the faithfulness of the map in portraying
| trends, as well as more localized contrasts. The NDET cannot be negative: it varies from
or a perfect map (which would need an infinite number of classes) to one for a one-class
where the (M, — M,;) term vanishes.

dternatively, a cross-product model could be employed in place of the difference modd,
~a ‘neighbour cross-product error index’:

IH(M oy~ M, {(Z=7,)

NCEI =
(7, -Z,)

©)

er improvements can be made by using root-mean-square measures in place of mean-
ion measures. If such accuracy indices are carcfully defined, they are essential components
» idiographic approach. They are almost irrclevant to the choice of serial or exogenous
als, except as checks on the degree of ‘suboptimality” which has been accepted. They might
cip decide on the number of classes to be shown.

\ final recommendation is that a combination of different accuracy indices, as used in Jenks
“aspall’s (1g71) map accuracy index, is of no genceral value. Rather, each map designer
decide what weight to give to each index —if he feels that idiographic optimization of this
s appropriate.

o
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FIGURE 1 Six alternative legends representing a geometr’e progression of class widths, cach class being twice as wide
as the next lower class

PRESENTATION OF LEGENDS TO CLASSES
To sclect a good class-interval system is not enough; the intervals must be communicated to the
reader. Since a map should be able to convey its message rapidly, the legend should be almost
redundant, serving to provide at a glance (if the information is quantitative) a calibration of the
absolute levels involved. (The relative levels should be obvious from the symabolism sclected.)
Hence the class limits should be indicated as simply as possible, and so that their progression is
readily perccived.

Figure 1 legend (a) is clumsy in repeating cach internal class limit, thus increasing visual
clutter, and not indicating whether values of exactly 2, 6 and 14 arc assigned to the class above
or to that below. For data with a resolution of two decimal places, legend (b) meets the latter
problem, but not the former: in fact it takes considerably longer to read (Schultz, 1961, p. 228).
The preferred form is legend (c), which indicates the limits at the bottom of the classes to which
they arc assigned. A reader has to scan vertically to find the two limits defining a class interval,
but this is desirable, since it leads him on to consider the complete series and to envisage 1ts serial
naturc and the continuity of the quantitative scale. An addition which could be made to any of
these legends is the indication of number of observations (f) per class on the left-hand side:
unlike the class limits on the right-hand side, these numbers are centred on each class box.
The name of the variable is best placed to the right of the class limits, Below the legend the
mture of the class-intcrval system may be indicated: if the map is for a specialist audience, the
fact that the progression is ‘to the basc 2’ can be added.

Version (d) shows the average of the observed values in each class, while (¢) shows the class
midpoints, which in this case are the extra boundaries needed for an eight-class division of the
ame o0-30 range, with basc 205, The latter might be the more usctul way of indicating central
vilues for each class. If class frequencies are also to be shown, they should be located to the right
or the class limits as in (¢) and printed in a thinner, distinct typeface so that they do not obscure
th: vertical progression of class limits. inally, legend (f) is a variant which obscures the con-
tinuity of the scale and seems incfficient for a quantitative map, but might be appropriate for
a map of nominal-scale data,

A further improvement would be to.give a histogram as another insert, and to mark the class
limits thercon. If nested means are used, the hicrarchic nature of class limits should be apparent
on the legend. If multiples of the standard deviation are used, the mean and standard deviation
should be given next to the legend. On the whole, (c) appears the clearest style of Tegend.

The presentation of legends to proportionally symbolized maps is more problematic. For
proportional point symbols such as circles or squarcs, the usc of a continuous line spanning the
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mode. The usual solution is a geometric progression of class limits, that is the use of cqual inter-
vals on a logarithmic scale. J-shaped distributions often remain J-shaped on a logarithmic scale,
so that the lower classes may contain more measurements than the highest. Having rather fewer
values in the higher classes gives a suggestion of the J-shaped nature of the distribution, and
caters also for Mackay’s (1955) point that large arcas of the densest shading arc acsthetically dis-
pleasing. If, on the other hand, the J-shaped distribution is negatively skewed, that is piled
up against an upper limit such as 100 per cent, geometric intervals are sclected by measuring
downward from the upper limit,

Many published maps are based on geometric progressions of class upper limits, but thesce
donotin general provide geometric progressions of class intervals (widths). The latter is essential
since cach successive class must be broader to cope with the decreasing frequency found ina J-
shaped distribution. For example, limits at 2, 4, 8, 16 and 32 provide a geometric progression
only if 1 is the lowest possible measurement. If the lowest measurement is o, both the lower
classes (0-2 and 2-4) arc of equal width, so there is a break in the progression of class intervals
and the lowest class is likely to contain many more measurements than any other. In fact, on a
logarithmic scale the width of the o-2 class is infinite. If the class intervals are to have the greo-
metric progression 2, 4, 8, 16, 32, the limits must then fall at o, 2, 6, 14, and 3o, i.c. 2 units
below the previous values (2 units being the size of the smallest class). Geometric progressions of
class width do net give equal divisions of a logarithmic scale. In addition to taking a different-sized
smallest class, the progression can be changed from base 2 (doubling) to base 3 (tripling, which
gives class widths of 2, 6, 18, 54 and 162) or to a fractional base such as 34

If a 1s the size of the first class, and x is the base of the geometric progression, successive
chiss widths for NV classes are: a, ax, av2, axd, a4, . .. ax¥™ ",

If the lower limit of the first class is zero, the upper limit of class Jis(Armand, 1973, p. 498):
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TABLE IV
The progression of class widths
(i) a ax ax? ax? - _ﬁ;
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The sclection of class intervals

TABLE V

starting al zery

Class limits for geometric progressions of class width for five classes with a median of 10
. ; s

Base I 2 3 4 5
o1 903 903 10°02 10°03 1003
02 815 9'77 o1 10717 1018
03 730 957 10-23 10°43 10°49
[} 608 935 10-41 1084 1101
[ 607 911 1063 11°39 1177
o6 555 8-87 1087 12'07 12:79
07 508 864 ey 1288 1410
o8 408 842 11°41 1381 1572
09 432 820 1170 1485 17:08
10 400 8-00 12:00 16:00 2000
11 372 7'80 12°30 17:25 22-69
rz 340 762 12:01 18'59 2577
3 324 744 1291 20'02 20:27
4 303 728 1322 2154 3319
3 2:85 712 1353 2314 37:56
-6 2:08 097 1383 2481 4238
17 2°53 083 14714 2650 4768
-8 239 0rGy 1444 28-38 5347
19 2:26 656 14'74 3020 59-76
20 215 044 1503 3221 6057
21 2:04 633 1532 3422 7391
272 1'g.4 (1 1501 3620 8179
2-3 1-85 011 15790 3842 o2}
2°4 177 0-o1 10-19 4001 99°23
2-5 104 501 16-47 4285 108-82
2:0 102 582 1074 4515 11400
27 55 573 17-02 4750 129'79
2-8 149 564 1729 49-89 14119
29 143 5'56 17°56 52'34 15322
30 137 548 17-82 54'84 165-88
31 132 541 18-08 5738 179°20
32 127 534 18-34 59'97 19318
33 122 527 1860 62-61 20783
34 g 520 18-85 652y 22316
35 14 513 19°11 68-01 239-18
36 110 507 1935 7078 255°Q0
37 107 501 1960 7359 27333
38 103 495 1984 76744 29149
39 oo 489 z0°08 79'33 31037
40 097 484 20°32 82:26 330°00
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proportion of immigrants or other minority groups, per area. Finally, this solution does not
give a geometric progression of class widths, but rather of class limits,

Instead, it is suggested that geometric progressions should pivot about some measure of
central tendency. Given the high skewness, the only such obvious measure is the median. The
median should be made the geometric midpoint of the middle class if there are an odd number of
classes, or the boundary between the two central classes if there are an even number.

This balancing point may be established in more general terms by considering the geometric
progression to the base x* which has twice as many classes and utilizes the same class boundaries
as for base x, plus the geometric midpoint of each class (Table IV).



Base I 2 ki 4 5 0
o1 g-o1 9791 10°00 16'01 10701 10°01
02 806 968 10°00 10'00 10'08 1008
03 719 935 1000 1019 10°25 10°27
0’4 6-41 8:97 1000 10°41 10'57 10°04
o5 571 857 10°00 10°71 11°07 11'235
o6 510 816 10°00 1110 11'76 1216
07 457 776 10°00 trsy 1260 1343
o8 410 738 10°00 1210 1378 15712
09 369 7'01L 10700 12:09 15711 17°29
1o 333 6:67 10°00 1333 1667 20700
1 302 034 1000 1402 1844 2331
12 275 6-04 10°00 1475 20744 2728
13 2'51 570 10700 15°5% 2266 3197
"4 2:29 550 10-00 16-29 25°10 17744
IS 211 520 10°00 1711 2776 4375
16 94 504 10-00 17794 30°04 5096
7 179 483 1000 1879 3373 59°13
-8 166 404 10°00 S 10060 17704 6832
1y 154 4'45 10°00 20'54 4055 78:59
20 143 429 10°00 21°43 4429 9000
21 133 413 10°00 22-33 4823 102-601
22 124 3498 10°00 2324 52-38 116°48
23 116 384 16°00 2410 56°74 131-67
2°4 10y 371 10°00 25°09 01731 14824
25 103 159 10°00 2003 6609 166-25
26 097 347 10°00 20097 71°07 185°76
27 01 337 10°00 2791 76°27 20683
28 086 326 10°00 28 86 $1°06 22¢°52
2°¢ o 81 3717 10°00 29-81 8727 25389
30 077 3-08 10°00 30°77 9308 280-00
31 0'73 2:99 10°00 3073 9909 307'91
32 00y 2°91 10°00 32:69 10531 137-68
33 0-66 2:83 10-00 3360 11173 30437
k) 063 2:70 10°00 1403 11830 40304
35 o-ho 209 1000 3560 12519 43875
36 057 262 10°00 3057 132:22 476-56
37 054 256 10-00 3754 13940 516°53
38 052 249 10°00 3852 146-8¢ 55872
39 050 244 10'00 30'50 154754 60319
40 o048 23R 10°00 4048 162-38 65000

Two progressions are shown at approximately logarithmic scale:
(i) five classes with initial class width 4, progressing to the base x
(ii) ten corresponding classes with initial class width b, progressing to the base x*

Class limits for geometric progressions of class width

IAN S.EVANS
TABLE VI

Sor six classes with a median of 10, siarting at sero

P is the median or balancing point of the progression.
The range embraced by the progression is given by

ship

From Table IV, it can be seen that if alternate class boundaries are to coincide, the relation- 2

c =4 c=9
Y axt = Y bt = b(l—.\'s)/(l-—,\")
o o

a=0b(1+xY

(1 3
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TABLE VII

Class limits for geometric progressions of class widih for seven classes with a median of 10, starting at zero

117

Base I 2 3 4 5 [ 7

o1 9°00 9'90 999 10°00 10°00 10°00 1000
02 8-03 963 996 10°02 10°03 10°04 10°04
03 711 924 988 10°07 10°13 1014 1015
04 6-25 875 975 1016 10°32 1038 10°40
o5 548 823 9-60 1028 10-63 1080 10-88
oh 480 769 942 10'45 11-08 1145 1167
07 421 715 o1 10:060 16y 12°37 1287
o8 369 664 900 10:8¢ 12°40 1301 1458
09 324 610 879 111§ 1328 1549 16:92
1o 2-86 571 857 11'43 1429 17'14 20°00
1 253 530 836 1172 1542 19°49 23:96
12 2:24 493 815 12'02 16-67 22°24 2893
13 199 458 795 12°33 18-03 25'43 35'05
4 178 427 776 12°05 1949 2900 42'47
s 1'60 3-00 758 12°96 21'04 1310 51'33
6 144 373 7°40 1328 2269 3773 61-81
7 129 350 724 13-60 2442 42-80 74°00
-8 117 3-28 708 13'92 2622 4837 8824
g 106 3'09 6-93 1423 2810 5446 10454
20 097 2:91 679 14'54 3000 6108 12314
21 08y 2'75 665 1485 32'08 6825 14420
22 081 2:60 652 1516 3416 75°97 167°04
2'3 074 2°46 6-40 1546 3631 8425 10452
24 069 2°33 6-28 1576 3851 93751 22416
25 063 2°21 617 16-06 4077 102'57 257°05
20 0°59 2°11 606 1635 43'09 112°62 20340
27 0'54 2'01 5796 1664 45'46 12329 33342
28 050 191 5°86 1692 47'88 134'58 37733
29 047 1-83 577 17-20 5036 146-50 425'33
ki 0°44 175 5768 17'48 5288 159'07 47765
3 041 1:67 5:60 1775 55'45 17230 53452
32 038 160 5°51 1803 5806 186°18 59617
33 036 154 543 1829 6072 200°75 662°83
34 034 1'48 530 1856 6343 216700 734'73
3’5 032 142 529 18'82 6618 23104 812712
36 030 1'37 522 1908 68-97 24859 89523
37 0-28 132 515 19°33 7081 26596 98433
38 020 127 5°08 19°58 7468 284705 107965
39 025 122 5:02 19'83 77-60 302-87 1181°45
40 024 118 496 2008 8055 322°44 1290-00

initial class:

=N-1
P=b ) x*=
c=0

a c=N-1

)

l+xi c=0

gz a(1=x""?)
(I-x)

where N is the number of classes in the series of which P is the balancing point. By setting P
equal to the median of the obscrved frequency distribution, we can calculate the size of the

c=N—-1
a =P(1+x%)/< Z xc/z)
c=0

P(1—x)
=

must hold. The appropriate ‘balancing point’ for the five-class serics is the boundary, P, between
the fifth and sixth classes of the ten-class series: in general terms,

®

(10)
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TABLE VIII

Class limits for geometric progressions of class width for eight classes with a median of 10, starting at zero

Base I 2 3 4 5 0 7 &
o1 ¢ 00 9'90 9°99 1000 10°00 10°00 10°00 10°00
o2 8-o1 962 9°94 10°00 1001 10'02 1002 10°02
03 7-00 R 981 1000 10°00 1007 1008 10-08
o4 616 8:62 9:61 10°00 1016 10°22 10°25 1026
o5 533 800 933 1000 10°33 10°50 1058 1063
ol 4060 735 g0l 10:00 1000 1095 1117 1130
o7 395 071 8:64 10'00 100§ 1101 12-08 12:40
o8 339 610 827 10°00 11°39 12'50 13'39 1410
09 2:91 552 788 10°00 11°91 1362 1517 16:56
10 250 5'00 7'50 10°00 1250 15°00 17:50 2000
11 213 4'52 713 10°00 1315 16-62 20'44 2464
r2 1-86 4'10 678 10°00 1386 1830 2406 3074
13 162 372 6-45 10700 1462 2062 2842 3856
14 1741 338 614 10°00 15741 2298 3358 4842
15 123 308 585 10-00 1623 2538 3960 6062
(%8 108 281 557 10°00 1708 2841 40:53 7554
17 095 2'57 532 10°00 1795 3v47 5445 9352
1-8 o84 2-36 500 1000 . 18'84 3470 63 41 11498
19 075 217 487 10 00 1975 3827 73746 140°32
20 007 2:00 467 10'00 2067 4200 8467 170°00
21 o060 1-85 448 10°00 21-60 4595 97:09 204748
22 054 171 430 1000 22°54 5011 11078 24426
2°3 048 1'59 414 10:00 2348 5449 12581 28984
24 044 148 399 10°00 2444 5908 142022 3477
23 03y 138 384 10'00 2539 6388 16009 40062
26 036 1-29 371 16°00 2036 68-89 179°47 4006-97
27 033 121 358 1000 2733 7411 200741 54144
28 030 113 347 10°00 2830 79°53 22298 62465
29 027 1'00 135 10°00 29°27 85°16 247724 71728
30 023 1'00 325 10°00 30725 91-00 273725 820700
31 023 094 315 10°00 31°23 97-04 301-00 933'52
32 021 0-8y 3700 10°00 32:21 10329 33074 105858
33 020 0-84 2'97 10°00 3320 100°74 36234 119592
34 o118 o080 2-8¢g 10°00 3418 116:40 395°03 1340'33
35 017 073 2-81 1000 3517 12325 431°50 151062
30 o'1h 072 2:73 10'00 3016 130732 40929 168¢-61
37 014 068 2:66 10°00 3714 13758 504'1¢ 188416
38 01} obg 2-00 10°00 ™13 14505 55132 200513
39 013 062 2'53 10°00 39°13 15272 505'72 2323'44
40 012 0°34 2:47 10-00 40712 16059 642°47 2509°99

[enee instead of sclecting two arbitrary parameters, we need only scleet one, the base x, in
addition to the number of classes. Tables V to VIIT give such geometric progressions for five,
six, seven, and eight classes respectively, tor a fixed median of 10 and for scries starting at 0. Any
base between o1 and 4-0 can be selected, and the scries can be applicd to any data sct by multi-
plving the tabulated values by (median /1 0).

For example, if a prior decision has been taken to map six classes, and a data set has a median
of 4 and a maximum of 110, a scries {from Table V is sclected and multiplied by o-4. Base 30
thus gives the limits o0, 0:308, 1°232, 4000, 12-308, 37:232, 112:000, which just accommodates
the range of observed values. A higher base could be employed, but the highest class would then
be under-used ; and if a much lower base were uscd, the masimum would fall beyond the strict
limit of the highest class, which is inclegant though somctimes practical in permitting greater
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differentiation among low values. Those who wish to use the maximum, despite its capricious
- pature, can set this equal to the upper limit of the highest class (after multiplication by (median
f10)) and usc the appropriate base established by interpolation. Equation (6) permits recalcula-
tion of class boundaries to any desired level of resolution. It is recommended, however, that for
presentation on a map legend, class limits should be rounded to the resolution of the data, or to
three or four significant digits for ratio data.

CLLOSED PERCENTAGES

A further consideration is that geometric progressions are often applied to percentages, for example
" of minority groups. In this case there is an upper limit of x00 per cent as well as a lower limit of
" gero. These bounds can be used, together with the median (unless the median is o per cent),
w fix a geometric progression which covers not the actual, but the potential range of the data (o to
100 per cent). For a given number of classcs, the lower the median, the higher the base to be
used, as is more appropriate for an increasingly J-shaped frequency distribution.

If there are N classes in the progression to base , and therefore 2N in the progression to
hase ¥, both of which go from o to 100, cquation (2) gives:
¢=2N-1 a <=2N-1 a 1=x¥ a(l-xY)
100 = I X = g X = = 1
, CZO v l+-\'i CZO N l+x*1—.\'& | -x ( )
combined with equation (7), we have:
c=N-1
100 Y x?
b= C=ZCN:l (12)
xc/2
CZO
This is equivalent (A. Young and R. Gawley, pers. commun.) to the quadratic in #V/2;
Px¥—100x¥*+100—P =0 (13)
with roots of ¥ = 1 and » = (100-P)/P
Hence the appropriate base can be calculated directly from the median as
100 — P\Y/®
= 14
= () 19

This is casily calculated, but by way of excmplification Table IX gives base, x, asa function
of (obscrved) median and of number of classes. Given ¥, the size of the initial class can be calcu-
lated from equation (10), and further class limits from cquation (6): For example, if tl median
of a variable which cannot exceed 1oo per cent is 7-8 per cent, the appropriate base wl ich gives
five classcs is 2686 (from Table IX), the first class is 7-8(1-2-686)/(1-2-6862'5) = 1-21. 97 (from
equation 10), and the class boundaries are o, 1-215, 4478, 13244, 30788, 100-028 (fr m cqua-
tion 6).

, If rounding crrors give an uppermost class limit, ¢, slightly different from 100 per ent, this
2 an be corrected by rescaling each limit by 100/g. [t is best not to interpolate in this Table, but to
" use the equations and carry a sufficient number of decimal places.

e Alternative systems for closed percentages involve cqual intervals on trigonometric trans-
formations of the percentage scale, for example the arcsin (square root). If the 100 per cent range
“is covered, the latter gives limits which are symmetrical about 50 per cent; for five classcs, the
Jimits arc 0:00, 955, 3.4'55, 05°45, 90-45, and 100-00 per cent. These must zof be multiplied by a

(Hf asr Biles
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or morc houscholds in County Durham, 1971: » trequency

arcsin (square root), otherwise known
denominators vary little, this trans-
follow a binomial distribution.

There are, in fact, theoretical grounds for applying the
s the angular, transformation to closed percentages. If the
ormation stabilizes the variance of ratios whose numerators (
simultancously it reduces the positive skew of percentages with low means and thc_ negative
kew of closed percentages with high means (approaching 1oo per cent or go°), while having
ttle effect on those with means near 50 per cent (457), which are usually unskc“.'c.d. In reality,
he variability of denominators complicates matters, as do other spatial heterogencitics, but near-
Jormality and fairly constant variance is achicved for the c]o:?cd percentage variables (){ age
tructure, houschold size and crowding taken from the 1 km grid-square census ('latu for Great
3ritain, 1971. Hence the angular transformation permits st;u.ldard—dcvmtx.(m class 1¥1tcrvals to he
wpplicd to many census variables. 1t is not successful for 1)_lrthpl“.lCC v;}rl:\blcs which haw:c very
ow mean percentages and remain skewed cven after transformation: for these, geometric pro-
rressions are required, even though they arc not perfect and leave several classes undcruuhzc@.
|ikewise, for Great Britain, the percentages of population born in I'lnglung], in Wales and in
Scotland are bimodal due to mixing of squarcs for the country involved with squares for the
other two countrics; their standard deviatious are excessively high relative to 'thcir means, and
cqual class intervals are therefore used, as is also the case for some tenure variables.

MODES AT ZERO
e a secondary mode at zero (Pig. 3), making them significantly

Frequeney distributions often hav ) : :
bimodal. Standard deviation or range-bascd classes may pick out the bimodality because the
ither side. But the most cle

sccond lowest class may occur less often than those oncet
if zero is a frequent occurrence, is probably 1o treat zero as one class,

.
=1

scparately, and to subdivide

ant solution, .
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2" the remainder according to a precise system based on their frequency distribution. This is
especially uscful when the median is zero.

Truly bimodal distributions may be mapped on cither a range or a standard-deviation basis,
with some loss of mapping efficiency in that several classes may be of rarc occurrence. If a small
aumber of classes is used, it is necessary to check that the incidence of class limits does not
disguise the bimodality ; in this rare casc, as suggested by the proponents of ‘natural breaks’, it is
best that one or more class boundaries should fall in the trough between the two modes.

CONCLUSION

Bt Insummary, a standard-deviation-bascd class interval with open highest and lowest classes is of
widest applicability, for all variables which can be transformed to essentially unimodal, sym-
metrical frequency distributions. Tor rectangular distributions, range division 1s best, while for
J-shaped distributions a geometric progression of class width is chosen. This is the combination
used for the maps in Dewdney and Rhind (1976), where a class size of one standard deviation
was most often used. In each case, information about the frequency distribution should be
implicit in the map. Hence it is necessary that careful analysis of frequency distributions should
precede mapping, and indeed precede any quantitative analysis.

Percentile-based classes or nested-mean limits may perhaps facilitate comparison of maps of
variables with different types of frequency distribution, but they must be interpreted very care-
fully in relation to the frequency distribution. Excgenous class boundaries provide uscful
reference points, if available, but idiographic boundaries should almost never be used. These
considerations apply most strongly when a small number of classes is to be used. For propor-
tional symbolization, the ‘intervals’ used are effectively equal, preferably on a measurement
scale which gives a symmetrical frequency distribution.

To discuss class intervals solely in the context of choropleth maps is misleading; class
intervals are required for any type of graded symbolization, bascd on point, line or arca symbols.
Such grading or classification is necessary if the class of individual symbols is to be accurately
£ perceived, but not if the aim is to present a synoptic, photograph-like picture of a distribution
" (Tobler, 1973). However, technical limitations in both automated and manual cartography often
necessitate definition of a finite number of classcs.
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