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 A basic truism of geography is that the incidence of phenomena differs from place 
to place on the surface of the earth. Theoretical treatises that assume a uniformly fertile 
plain or an even distribution of population are to this extent deficient. As Edgar Kant1 has 
put it:  
 

“The theoretical conceptions, based on hypotheses of homogeneous 
distribution must be adapted to geographical reality. This implies, in 
practice, the introduction of corrections with regard to the existence of blank 
districts, deserts of a phenomenon, massives or special points. That is to say 
that in practice we have to take into especial consideration the anisotropical 
qualities of the area geographica..” 

 
The ceteris paribus assumptions that are repugnant to a geographer are those which 
conflict seriously with the fundamental fact that the distribution of phenomena on the 
surface of the earth is highly variable. Von Thünen2, for example, postulates a uniform 
distribution of agricultural productivity; his economic postulates are no less arbitrary, but 
they disturb the geographer somewhat less. Christaller’s central place theory is in a similar 
category; for the necessary simplifying assumptions, among them a uniform distribution 
of purchasing power, are unsatisfactory from a geographic point of view.3 In order to test 
the theory empirically, one must find rather large regions in which the assumptions obtain 
to a fairly close approximation. The theory can, of course, be made more realistic by 
relaxing the assumptions, but this generally entails an increase in complexity. An alternate 
approach, hopefully simpler but equivalent, is to remove the differences in geographic 
distribution by a modification of the geometry or of the geographic background. This has 
been attempted by other geographers with some success, but without clear statement of 
the problem. 

Map projections always modify certain geometric relations and hence would seem well 
suited to the present task. However, instead of considering the earth to be an isotropic 
closed surface (as is traditional in the study of map projections), account can be taken of 
an uneven distribution of a phenomenon on this surface - the area geographica. The topic 
is approached by an examination of a number of published maps called cartograms in 
current cartographic parlance. Attention is here directed toward those types of cartograms 
that appear amenable to the metrical concepts of the theory of map projections, with no 
attempt at definition of the rather vague term cartogram. 
 



EXAMPLES OF CARTOGRAMS 
 

Cartograms are of many types. The accompanying illustration showing “A New 
Yorker’s Idea of the United States of America” (Fig. 1) contains several interesting 
notions. The thesis of cognitive behaviorism suggests that people behave in accordance 
with the external environment, not as it actually is, but as they believe it to be.4 In this 
vein, the cartogram presented can be considered to illustrate one type of psychological 
distortion of the geographic environment that may occur in the minds of many persons. It 
is clear that the distortion is related to distance. Furthermore, the areas of the states are not 
in correct proportion; Florida, for example, appears inordinately large. Hence distortion of 
area can be recognized, though a complete separation of the concepts of distance and area 
is not possible in this instance. 

The second illustration is also a distorted view of the United States (Fig. 2), but the 
purpose of this cartogram is somewhat different. The areas of the states and cities are 
shown in proportion to their retail sales, rather than in proportion to the spherical surface 
areas enclosed by their boundaries. Harris’ point is that the expendable income, not the 
number of square miles, is a more proper measure of the importance of an area - at least 
for the purposes of the location of economic activity. Harris also presents cartograms of 
the United States with map areas of the states in proportion to the number of tractors on 
farms and to the number of persons engaged in manufacturing.5 Raisz6 presents a 
cartogram with the areas of the states in proportion to their populations. Hoover7 stresses a 
point of view similar to that of Harris and presents a different cartogram of the United 
States, with map areas of the cities and states in proportion to their populations. Weigert8 

recognizes that the importance of a country may be more directly proportional to its pop-
ulation than to its surface area and presents a cartogram placing the countries of the world 
in this perspective. Woytinsky and Woytinsky9 make extensive use of a similar cartogram, 
reproduced here as Figure 3. Zimmermann10 presents further examples—cartograms of 
world population and of output of steel by country. 

Whether all these cartograms are to be considered maps, based on projections, is a 
matter of definition and, as such, is not really important. Raisz stresses the point that his 
rectangular statistical cartograms are not map projections. The network of latitude and 
longitude on the Woytinskys’ population cartogram (Fig. 3) suggests a map projection but 
is actually spurious, as the Woytinskys themselves remark. However, since all maps 
contain distortion, the diagrams can be regarded as maps based on some unknown pro-
jection. Certainly the definition that considers a map projection to be an orderly 
arrangement of terrestrial positions on a plane sheet suffices. It also seems adequate to 
demonstrate that diagrams similar to these cartograms can be obtained as map projections. 
But what is the nature of these projections? No such map projections are given in the 
literature of the subject. The question is approached by a detailed examination of a simpler 
problem posed by Hãgerstrand. 



Hägerstrand has been concerned with the study of migration. In discussing the 
cartographic problem, he states: 

 
“The mapping of migration for so long a period, giving the exchange of one 
single commune with the whole country in countable detail, cannot be made 
by ordinary methods. All parts of the country have through the flight of time 
been influenced by migration. However, different areas have been of very 
different importance. With the parishes bordering the migrational centre, the 
exchange has numbered hundreds of individuals a decade. At long distances 
only a few migrants or small groups are recorded. A map partly allowing a 
single symbol to be visible at its margin, partly giving space to die many 
symbols near its centre, calls for a large scale since we wish to be able to 
count  on the map”. 

 
It is desired to count symbols on the map. This is a clear statement of a common 

cartographic problem. The situation occurs frequently in the mapping of population, 
where high concentrations appear in restricted areas and smaller numbers are spread more 
thinly throughout the remainder of the map. Certainly every cartographer has at some time 
wished for a distribution of a phenomenon that did not seem to require that all the symbols 
overlap. One solution has been the introduction of so-called three-dimensional symbols.12 

An alternate solution is here suggested, based on the theory of map projections. Also note 
the distinction between the common geographic use of an equal-area map to illustrate the 
distribution of some phenomenon and Hãgerstrand’s emphasis on the recovery of 
information recorded on the map. 
 In the problem as formulated by Hägerstrand , the exchange of migrants is known not to 
be distributed arbitrarily but is a function of distance from a center, the commune being 
studied. More commonly, differences from one area to another vary much more 
irregularly, as in, for example, the distribution of population throughout the world. Careful 
reading of Hägerstrand’s statement suggests that the functional dependence is one of 
decreasing migratory exchange with increasing distance from the center. This can be  
recognized as a simple distance model often employed by geographers. In particular, the 
suspected function of distance can be postulated to be continuous and differentiable, 
strictly monotone decreasing, and independent of direction. If these postulates are 
accepted, the functional dependence can be shown on a graph as a continuous curve, in 
this instance a curve of negative slope. The curve can be considered a profile along an 
azimuth, and the expected incidence of migration could be shown on a map by isolines. 
This suggests that variants of the solution to Hãgerstrand’s problem can be applied to 
many isoline maps. Population density, for example, is often illustrated by isolines drawn 
on maps, and an approach to the population cartograms is suggested. Hägerstrand’s own 
solution is as follows13: 



 
“The problem is solved by the aid of a map-projection in which the distance 
from the centre shrinks proportionally to the logarithm of the real distance. 
(The method was suggested to the author by Prof. Edg. Kant. Maps of a 
similar kind are used for the treatise ‘Paris et l’agglomération Parisienne’ 
1952.) The rule obviously cannot be applied to the shortest distances. Thus 
the area within a circle of one km radius has been reduced to a dot. 
The distortion in relation to the conventional map is of course considerable.” 

 
The basis for the choice of the logarithmic projection (Fig. 4) is not clearly indicated in 
this statement. An azimuthal projection that yields the desired result seems to have been 
plucked out of thin air. Working backward, however, the radial scale distortion is seen to 
be ρ-1 (where ρ is the spherical distance), and it can be inferred that the projection was 
obtained by taking the suspected function of distance as the radial scale distortion, as can 
be done for any of the distance models employed by geographers.14 The space elimination 
at the origin is appropriate, for it excludes the commune being studied (which does not 
belong to the domain of migration). But is Hägerstrand’s the most valid solution to the 
problem as formulated? The concept of primary concern is not distance but area. This is 
implicit in the statement that it is desired to be able to count symbols on the map. The 
suggestion is that the map should show the areas near the center at large scale and those at 
the periphery at small scale. Such maps would be useful in most studies of nodal regions. 
Hägerstrand’s solution achieves this objective, as can be verified by calculation of the 
areal distortion, at least for areas near the center of the map. But so do the orthographic 
projection, the square-root projection, and many others. The azimuthal equidistant 
centered on the antipodal point also yields the desired solution and has been used for this 
purpose by Michels.15 Kagami16 suggests an alternate solution when faced with an almost 
identical problem. Charts for aircraft pilots have also been prepared using maps that have 
a large scale near the center and a small scale at the periphery.17 
 

CARTOGRAMS AS PROJECTIONS 
 

To clarify the situation, one should note that it is the areal scale, and not the linear 
scale, which is important. Furthermore, it is natural to require that the areal distortion be 
exactly the same as the expected or observed distribution. Somewhat more precisely, 
Hàgerstrand’s problem can be generalized in the following manner. In the domain under 
consideration there are locations from which migration to the center originates. If we 
consider the beginning point of each migration to be an “event,” each small region 
(element of area) will (or is likely to) contain a certain number of events. Hence with each 
proper partition of the domain is associated a number, and the area contained within the 
boundaries of the corresponding partition on the map is to be proportional to this number. 



The similarity to the cartograms previously presented is now clearer. In each instance a set 
of non-negative numbers (people, dollars) has been associated with a set of bounded 
regions (cities, states, nations). The objective is to display the regions on a diagram in 
such a manner that the areas within the boundaries of the regions on the diagram are 
proportional to the number associated with the particular region. Harris recognizes the 
similarity of the concepts, for his cartogram “A Farm View of the United States”18 is 
accompanied by a histogram of the number of tractors by states. On an equal-area 
projection, the number associated with each partition is the spherical (or ellipsoidal) 
surface area. 

There seem to be two methods of attacking the details of these map projections. One 
assumes differentiability; the other is an analogue of the first but employs what might be 
called rule-of-thumb procedures. Each method has advantages and disadvantages. The 
differentiable cases display the similarity to equal-area map projections somewhat better, 
whereas the approximation methods are simpler to use with empirically obtained data. The 
differentiable cases also allow explicit solution for the pair of functions necessary to 
define a map projection. No attempt is made here to duplicate the specific cartograms 
illustrated; the purpose is only to indicate the class of projections to which they belong. 

The data are somewhat difficult to manipulate when the partitions of area are large. It is 
therefore convenient to reduce the values associated with each portion of the domain to 
density form, and to think in terms of a continuous (integrable and differentiabIe) 
distribution that can be represented by isolines on a sphere. The details of this device are 
well known and can be omitted here19. The map area between given limits is then to be 
proportional to the total distribution between corresponding limits. The density 
distribution on the surface of a sphere is assumed to have been described by an equation. 
For equal-area projections the density of spherical surface area is always constant (unity), 
so that correct values are also obtained in this special situation. As is true of area, finite 
densities sum to a finite value, so that the density-preserving property of the projections to 
be achieved obtains both locally and in the large. The use of density values also facilitates 
the further objective that common boundaries between regions should again coincide on 
the final map. 

The derivation of the cartograms under consideration as map projections follows 
directly from the preceding discussion. A mathematical analysis of this class of map 
projections is given in the Appendix. A special case, of some practical interest, is given 
here to illustrate the general method. 

The distribution of population in an urban area can be described as a density function 
D (δ, γ) on a plane, using polar coordinates δ, γ. Horwood20 has suggested one such 
distribution in which the density decreases monotonically from the center but also varies 
from one direction to the next (Fig. 5). The specific theoretical function taken by 
Horwood is such that the density is highest along symmetrically spaced radial streets (n in 
number) and less in the interstitial areas, which is not unrealistic and is easily described by 



trigonometric functions or Fourier series. The population is then given by the integral 
∫∫R δ D (δ, γ) dδ dγ.  To transform this to the map plane so that all map areas have identical 
densities, set 

 
or 

 
which is equivalent to  r | J | = δ D (δ, γ), where 

 
For one solution, not necessarily the most appropriate but simple, stipulate that the 
transformation is to be azimuthal, that is, that θ = γ. Then ∂θ/∂δ = 0, ∂θ/∂γ= 1, and  
J = ∂r/∂δ. The equation to be solved for r is consequently r2 = 2π ∫ δ D (δ,γ) dδ + g(γ), 
and the remaining details are matters of integration and root extraction. This example 
could be extended to a sphere or spheroid, but for an urban area there is little point in 
such. extension. The image of the original polar coordinates on the final map might appear 
as shown in Figure 5. 
 Although further details are in the Appendix, certain results from the mathematical 
analysis are worth noting here. It is easily shown that the transformations are a 
generalization of equal-area projections in the sense that all equal-area projections 
represent a special case. Moreover, this class of projections can be obtained by setting 
Tissot’s measure of areal distortion equal to the given (expected, probable) density 
distribution. It is also apparent that there are an infinite number of solutions for any 
specific density. This suggests that additional conditions be applied. Of the many possible 
conditions, two are of particular interest. Since this class of projections is equivalent to 
projections with areal distortion, and since all conformal projections of a sphere distort 
area, it follows that a conformal projection with a specific areal distortion should yield a 
solution. The transformation also may be taken so that cost or time distances from the map 



center are correctly represented. Occasionally the assumption of continuity of a 
distribution is not warranted. The data are often in the form of discrete locations, as on a 
population dot map; or are grouped into areal units, such as census tracts; or refer to areal 
units rather than to infinitesimal locations, such as land values that refer to specific parcels 
of land. In these cases an analytic solution usually is not feasible and rule-of-thumb 
approximations are useful. Even in the case of continuous distributions, descriptive 
equations are difficult to obtain and, at present, are not available for geographic data, 
though theoretically possible. Approximation methods, therefore, are useful. They can 
also be used to demonstrate some of the different types of particular solutions available 
and some of the additional conditions that may be applied. The approximation methods 
are no less valid than the methods used in the differentiable cases and can be formalized to 
the same extent, but they are more akin to topological transformations than to those 
traditionally associated with cartography. 

The only known description of the method used in the preparation of the cartograms 
previously mentioned is that given by Raisz21; the method used by others is presumably 
similar. The populations of the states are taken as given, and rectangles proportional to 
population on are drawn on a sheet of paper; adjacent rectangles are adjusted until 
neighbor relations and overall shape are approximately correct. This is illustrated in 
Figure 6. Though the example is very simple, there are still an infinite number of 
solutions, but some seem more appropriate than others. Preservation of the internal 
topology is one condition that seems desirable; this is in fact a requirement that the map 
(not the distribution) be continuous (a homeomorphism - neighborhoods are preserved 
under the mapping). Preservation of the shape of the external boundary is another 
condition that might be applied. Alternately, one might wish the boundary to map into a 
specific shape. These last two conditions are difficult to specify even in the analytic case. 
If one thinks in terms of a map of a part of the earth’s surface, an obvious difficulty is that 
the immediately foregoing examples do not indicate where positions within the original 
areal units are to be placed within the corresponding partitions of the transformed image. 
Stated in another way, if locations in the original are described by latitude and longitude, 
where are the images of these lines in the transformed image? If the partitions represent 
states, the placement of cities is rather arbitrary, and so on. Here the differentiable cases 
display a distinct advantage. However, if a coordinate system is introduced in the original, 
and an assumption of uniform density within each partition (for example, states) is made, 
the difficulty can be circumvented by estimating lines of equal increments of density on 
the original. These lines then correspond to an equal-area grid system on a plane, and the 
converse. A similar method can be employed when the original data are given in the form 
of a dot map. If a partition has no entries, the map area should vanish, a collapsing of 
space or a many-to-one mapping. Figure 3 actually consists of several domains; otherwise, 
ocean areas would be eliminated (lines of latitude and/or longitude coincide), just as 
Greenland and Antarctica do not appear on the map. Although there is some population in 



the ocean areas, the amounts are so small as to be negligible. In the continuous case with 
zero density the transformation becomes many-to-one (a collapsing of space) for this part 
of the domain. 

The approximation methods need not be discussed in more detail; they are fairly simple 
and do not reveal information that is not readily apparent from an examination of the 
equations given in the Appendix. More interesting, and more difficult to evaluate, are the 
geographic uses of maps obtained by the foregoing types of projections or 
transformations. These applications should also suggest the additional conditions to be 
applied in selection of a specific transformation from the infinite variety of particular 
solutions available. 
 

GEOGRAPHIC APPLICATIONS 
 

Obviously, the map projections obtained can be used as were the cartograms 
previously presented, for they were derived by consideration of such cartograms. These 
many applications need not be repeated. Further, any distribution plotted on a map using 
such a transformation shows a ratio; income symbolized on a map equalizing population 
density shows per capita income, and so on. The projections may likewise be useful as 
base maps in simulation or other studies in which data are plotted by computer. 

It is also clear that any grid system which partitions the area of the plane map into 
units of equal size will yield a partitioning of the basic data into regions containing an 
equal number of elements when mapped back to the original domain. For example, states 
might be partitioned into electoral districts in such a manner that all districts contained an 
equal number of voters. The specific equal-area grids on a plane are infinite in number, so 
that this procedure is not really of much assistance. Equal-area grids are also difficult to 
define along irregular boundaries, and partitionings (electoral districts, and so on) are 
usually required to satisfy numerous additional conditions (coincide with city and county 
boundaries, and so on). To attempt to use the transformations in this manner seems 
politically impractical, though theoretically suggestive. 
 More interesting applications can perhaps be found in the theories of Von Thünen and 
Christaller. It is in this context that Harris and Hoover attempted to use their cartograms. 
Von Thünen assumes a uniform fertility of agricultural land, Christaller a uniform 
distribution of rural population or income, though both attempt to relax these unrealistic 
assumptions somewhat. If one postulates that agricultural fertility can be measured and 
varies from place to place—that is, that fertility can be described by a relation F=f (φ, λ) 
and if one then applies a transformation of the type described, areas of high fertility will 
appear enlarged. One can then plot23 an even yield (for example, in bushels) per unit of 
map area and, using the inverse transformation, return to the original domain. The even 
distribution of yields will now be uneven, and in fact corresponds to the distribution of 
fertility. This becomes more interesting if one adds the condition that cost distances from 



(or to, but not both) a market place appear as map distances from the center of the map 
and that the intensity of use (yields) decreases with cost distance. That is, on the map 
transformed so that all areas appear of equal fertility, returns are to be plotted as 
decreasing from the center of the map, as in the Von Thünen model. The inverse 
transformation will then display a distribution of intensity of use that takes into account 
fertility and cost distance from the market place. The measurement of agricultural fertility 
is by no means easy. Dunn23 doubts that such measurement can be achieved, but the 
United States Department of Agriculture publishes detailed information with a ranked 
classification (measurement on an ordinal scale) of rural land based on its economic value. 
Cost distances are used in the preparation of the map projection as another application of 
the notion that the earth should perhaps not be treated as an isotropic sphere. It is 
necessary to take into account not only the shape of the earth but also the realities of 
transportation on its surface. Automobiles, trains, airplanes, and other media of transport 
can be considered to have the effect of modifying distance relations - measured in 
temporal or monetary units - in a complicated manner. It can be shown (see Appendix) 
that a density-preserving projection with a continuous and monotonic but otherwise 
arbitrary centrally symmetric distance function can be obtained. This distance function can 
be the empirically obtained cost - or time - distance from the market place.24 

Just as the Von Thünen model can be applied to cities,25 the foregoing discussion can 
be rephrased using “suitability for construction” instead of fertility. Many urban areas are 
already built up, and construction is no longer feasible; other areas are blighted and have 
but little appeal; some locations have high prestige value; site and topographic factors 
vary; and so on. Undoubtedly, measurement of these values is difficult. Requirements for 
different classes of land use differ, and some measure of intensity of use seems required. 
Land costs are biased, since they reflect accessibility and an estimate of potential returns. 
Nevertheless, the transformation and its inverse can be used as before. Such a 
transformation takes into account only two factors and is therefore of only limited 
assistance in explaining the totality of urban land uses. The currently available models of 
urban structure are not outstandingly more successful. 

Christaller in his work on geographic location assumes a uniform distribution of the 
underlying rural population and then obtains sets of nested hexagonal service areas and a 
hierarchy of cities regularly spaced throughout the landscape. It has been shown how an 
uneven distribution may be made to appear uniformly distributed, and the pertinent 
question is whether Christaller’s resulting pattern will now be observed. The answer is 
difficult, for several reasons. Given an empirical distribution of income and market areas, 
the transformation is to make the income densities uniform and to send the market areas 
into hexagons. It is not clear how this latter condition is to be specified in choosing a 
particular transformation from the infinite set. Christaller obtains hexagons from 
consideration of circular service areas, and it is known that only the stereographic 
projection sends all spherical circles into circles. The stereographic projection, however, 



will certainly not result from the density-preserving transformation in the general case. 
Conformal projections in general preserve circles as circles, but only locally, and would 
require satisfying both conditions of conformality and a specific areal distortion. For 
relatively small service areas conformal transformations may be suitable. The solution (if 
one exists) to this problem is obscure. It is possible, of course, to draw hexagons on a map 
of some region transformed in such a manner that densities are uniform and, by use of the 
inverse transformation, to examine the resulting pattern of curvilinear polygons in the 
original domain. There is a slight problem here of specifying an initial orientation for the 
hexagons and of fitting hexagons to the boundaries of the image region. The appearance 
of the transformed hexagons will of course differ for each transformation in the, infinite 
set. Nevertheless, an experiment of this nature has recently been completed by Getis, 
using expendable income data for the city of Tacoma.27 Richardson’s conformal 
transformations of hexagonal patterns are somewhat similar.28 Some such procedure is 
also implied by Isard’s schematic diagrams of a hypothetical landscape29. Conceptually, 
Isard’s notions are correct, but the boundaries of the service areas will almost certainly not 
be straight lines, as they have been drawn in his illustrations. Conversely, one might use 
Vidale’s method of partitioning a landscape into service areas,3° apply a transformation, 
and examine the images of the service areas to see whether they resemble hexagons. Such 
an empirical experiment does not appear difficult; one can choose simple density 
distributions and use the simpler and more obvious transformations. None of these 
methods is as satisfactory as a theoretical solution, of course, though they may shed 
further light on the nature of the problem. Christaller’s hexagons also need not be 
retained. Another approach is to consider threshold populations, not hexagons. From this 
point of view the boundaries of service areas overlap and are somewhat indeterminate. 
Adding the concept of the range of a good enables one to define the region in terms of 
cost distances. In this instance the useful map projections are those which make cost 
distances from some location proportional to map distances from that location and which 
distribute densities evenly. 

Christaller is also concerned with distances; his circular service areas are more akin to 
geodesic circles using a “subjectively valued time-cost distance” (sic), and his spacing of 
cities stipulates some distance between cities. Yet distances are not preserved by the 
transformations; preservation of all distances is certainly not possible if densities are to be 
uniformly distributed on a plane map. Clearly, then, application of the suggested 
transformations to theories similar to those of Von Thünen and Christaller is difficult and 
only partly successful, though promising and capable of improvement. The deficiencies 
are to a certain extent due to the inadequacies of the theories themselves; for, at present, 
they are neither sufficiently general nor explicitly formulated. 
 

CONCLUSION 
Valuable map projections can be obtained that do not conform to the traditional 



geographic emphasis on the preservation of spherical surface area but rather distort area 
deliberately to “eliminate” the spatial variability of a terrestrial resource endowment. In 
many ways these maps are more realistic than the conventional maps used by geographers 
and would be of value even if the earth were a disk, as some ancients believed. The 
important point, of course, is not that the transformations distort area but that they 
distribute densities uniformly. It is hoped that future textbook presentations on the subject 
of map projections will include discussion of this interesting and highly useful class, of 
transformations. 
 

APPENDIX 
 

1. The element of area on a locally Euclidean (but otherwise arbitrary) two 
dimensional surface is given by the well-known formula due to Gauss:31  
dA = (EG-F2)1/2 du dv. The element of density on a surface is given by dD = D (u, v) dA, 
where D (u, v) represents the given (expected, probable) value at the point u, v. The 
general problem hence reduces to one of finding u’ and v’ as functions of u and v to 
satisfy 
 

or 

 
For a sphere  (EG – F2) is equal to R4cos2φ using geographical coordinates φ and λ, or 

to R4sin2ρ, using spherical coordinates ρ and λ . In the present instance the interest is only 
in plane maps; for a plane, E’G’ – F’2 is equal to 1, using rectangular coordinates x and y, 
or to r2, using polar coordinates r and θ. The interesting cases will generally be oblique 
projections, but this requires only a relabeling. 

When the Jacobian determinant (J) is written out in full, the following partial 
differential equations obtain: 



2. The difficulty of an explicit solution to 1.3 or 1.4 will depend on the specific form 
of the density function and the additional conditions applied. As is typical of differential 
equations, in general there will be an infinitude of particular solutions. Certain simple 
solutions, however, are immediately apparent. For example, if ∂x/∂φ = 0 and  ∂x/∂λ is  
arbitrary, then 

 
Or if ∂y/∂λ = 0 and y = f (φ) is given, then 

In polar coordinates a similar procedure is available. Taking ∂θ/∂ρ = 0 and a given ∂θ/∂λ 
yields 

 
An azimuthal projection is obtained if θ = λ, conic projections if θ = nλ, etc.. Taking  
∂r/∂λ = 0, and with r = f (ρ) selected arbitrarily, yields 

 
2. The condition that a map of the sphere be equal-area can he written as  

   | J | / R2 cos φ = 1  (or constant).      (3.1) 
Hence it follows immediately that equal-area projections represent the special case D =1 
(or constant). 

4. Areal distortion (S) is, by definition, the ratio of the element of area on the map to 
the element of area on die original. In other words, 

  
From a simple substitution it is seen that the density is the same as the areal distortion (i.e. 
D = S ). In Tissot’s notation S = ab, the product of the linear distortion in two orthogonal 



directions. Knowing this relation, we can obtain the desired transformations by choosing 
the areal distortion to match exactly the expected or known density distribution. 

5. If the density is given by cos–1 (ρ/2) and an azimuthal projection is desired, equation 
2.3 yields the stereographic projection. Although such a density is unlikely, this 
demonstrates the existence of conformal projections within this class of projections. The 
suggestion is that a conformal version exists among the solutions for many, if not all, non-
constant densities. Though the areal distortion on conformal projections is easily 
calculated, the existence of conformal projections with a given areal distortion involves 
more subtle considerations, which are not presented hcre.32 

6. According to Tissot, every non-conformal transformation retains as orthogonal 
curves one, and only one, pair of curves orthogonal on the original. An interesting 
question is whether the transformation can be determined so that the lines of latitude and 
longitude are the lines that remain orthogonal. For densities that depend on only one 
parameter the condition is readily obtained. For example, if D = D (φ) and ∂x/∂λ = 1, 
equation 2.1 yields a cylindrical projection. Korkine’s analysis of equal-area projections 
may be of use in obtaining the general case.33 

7. Transport costs are often said to increase at a decreasing rate with distance, i.e. 
∂2r/∂ρ2 < 0. If  r = f  (ρ) and a density D (ρ, λ) is given, equation 2.4 yields a solution that 
renders map distances proportional to transport costs and distributes densities evenly (see 
8.4). An even more interesting result would be the simultaneous solution of 1.4 with an 
arbitrary r = f  (ρ, λ ). 

8. A few particular solutions may be of interest. From 2.3 an azimuthal projection for 
a linearly decreasing density D = a ρ + b,  a < 0 < b, yields 
 r = [2R2 (- a ρ cos ρ -  b cos ρ + a sin ρ)]½ .                   (8.1) 
If the density distribution in Hägerstrand’s problem is assumed to be ρ -1, the appropriate 
azimuthal projection is 

 
Additional azimuthal projections for densities equaling exp (-ρ) or exp (-ρ2/2) would 
appear to be of geographic interest, and are relatively easily obtained. 

From 2.4 one obtains an equidistant version with r = R ρ and D = π - ρ: 
 θ = (-1 + π /ρ) λ sin ρ.        (8.3) 
Also from 2.4 but with r = R (ρ)1/2, D = π - ρ, one has 
 θ = 2 λ (π – ρ ) sin ρ + g (ρ).         (8.4) 
In all these instances it is necessary to examine the resulting transformation for one-to- 
oneness. Choice of the constants of integration may be of importance. In some instances 
the substitution of difference equations for the differential equations may be appropriate. 
The author has calculated further special cases, which will be made available to interested 



parties. 
9. It is suggested that these projections be referred to by their mathematical name; that 

is, as transformations of surface integrals. 
 
 
 
NOTES 

 
*The Geographical Review, LIII, 1 (1963), pp. 59-78. 
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