

Mapping and Analysis for Spatial Social Science

Luc Anselin

Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu

Outline

►Introduction ➢ Geovisualization Statistical Maps ► Map Smoothing Linking and Brushing Visualizing Spatial Autocorrelation Space-Time Correlation

Introduction

Spatial Models

Growing Interest in Space, Spatiality and Spatial Interaction among Theoretical Social Sciences

Overarching Concepts

- social interaction
- context, neighborhood effects
- Interacting agents, strategic interaction
- spatial externalities, agglomeration
- geography as a proxy

Spatial Data

- Growing Interest in the use of Spatial Data in Empirical Social Science
 - georeferenced data
 - addresses, lat-lon (GPS survey)
 - distance and accessibility measures
 - access to infrastructure, spatial mismatch

► Role of GIS

 affordable and transparent spatial data manipulation

Geographic Information Systems

➢ GIS as a Set of Tools

- Burrough: "set of tools for collecting, storing, retrieving at will, transforming and displaying spatial data from the real world for a particular set of purposes"
- a GIS, GISes (= systems)

➢GIS as Science (the "new" geography)

- Goodchild: Geographic Information Science
 - generic scientific questions pertaining to geographic data
 - central role of spatial analysis
- GIScience

What is Spatial Analysis

From Data to Information

- beyond mapping: added value
- transformations, manipulations and application of analytical methods to spatial (geographic) data

Lack of Locational Invariance

- analyses where the outcome changes when the location of the objects under study changes
 - median center, clusters, spatial autocorrelation

spatial analysis avant la lettre Dr. Snow's map of cholera deaths in London

Components of Spatial Analysis

Visualization
 Showing interesting patterns
 Exploratory Spatial Data Analysis
 Finding interesting patterns
 Spatial Modeling, Regression
 Explaining interesting patterns

Implementation of Spatial Analysis

➢ Beyond GIS

- Analytical functionality not part of typical commercial GIS
 - Analytical extensions, DynESDA2
- Exploration requires interactive approach
- Spatial modeling requires specialized statistical methods
 - Explicit treatment of spatial autocorrelation
 - Space-time is not space + time
- Methods of Geovisualization, ESDA and Spatial Regression Analysis

(Limited) Illustration of Techniques

- Geovisualization
 specialized maps
 ESDA
 dynamically linked windows
 Spatial Correlation Analysis
 global and local spatial autocorrelation
 - space-time correlation

Geovisualization

Beyond Mapping

- ≻ Map
 - "a collection of spatially defined objects" (Monmonier)
- Geovisualization
 - combination of map and scientific visualization methods (computer science)
 - exploit human's pattern recognition abilities
- > How to lie with maps
 - many design issues
 - human perception can be tricked

Choropleth Maps

Map Counterpart of Histogram

- values/attributes for discrete spatial units
- choro from choros (colors) NOT chloro

Practical Issues

- choice of intervals
 - equal interval, equal share (quantiles), standard deviational, ...
- choice of colors
 - important for perception of patterns
- misleading role of area
 - larger areas "seem" more important

Color Brewer www.colorbrewer.org

This material is based upon work supported by the National Science Foundation under Grant No. 9983451, 9983459, 9983461

Cartograms

Misleading Effect of Area

- Iarge areal units draw attention
- Symbol Maps
 - symbols (bars, circles) superimposed on actual areas
- ➤ Cartogram
 - change the layout to reflect size other than area
 - population size, variable magnitude
 - respect topology (spatial arrangement)

Choropleth Map (Juvenile Crime VA)

Point Map

Thiessen Polygons

Contiguous Cartogram

Nebraska county population - http://www.bbr.unl.edu/cartograms/pop.html

Cartogram (GeoTools)

Infant Mortality England and Wales, 1851

Isopleth Maps

Map Counterpart of Density Plot

- values/attributes for continuous fields
- Ines of equal value, contour lines
- 3-d surface plots
- Practical Issues
 - choice of intervals
 - spatial interpolation
 - construct "observations" for locations that are not observed
 - statistical problem = spatial prediction

Residential Sales Price, Baltimore MD (1980) sample points (darker is higher) and contours

Statistical Maps

Visualizing Spatial Distributions

Spatialized EDA

- icons and glyphs matching locations
- special case of symbol maps
- Box Map
 - outlier map
 - visual popout, both magnitude and location
- Regional Box Plots
 - spatial heterogeneity
 - different distributions in spatial subsets

spatial lag bar chart blue = crime at i, red = spatial lag, average crime for neighbors

Spatialized EDA

Spatial Chernoff Faces

the burglar's view of crime clusters in Columbus

Box Map

> quartile map with outliers highlighted

Linked Box Map in DynESDA2

Regional Histogram

Regional Box Plot

Columbus crime: core vs periphery

Map Plots and Plot Maps

Linked Micromap Plots - LM plots

- a micromap for each quantile
- micromaps linked to other statistical graphs
- Conditioned Choropleth Maps
 - cc maps
 - choropleth maps on dependent variable
 - micromap matrix
 - conditioning along two dimensions

Linked Micromap Plots (Carr)

Conditioned Choropleth Map (Carr)

Conditioned Choropleth Map Program

Map Smoothing

Mapping Events

Events as Locations

- individual points
 - point pattern analysis
- Events as Rates
 - areal aggregates
 - counts of events
 - rate = # events / # population at risk
 - raw rate is ML estimate of "risk"
Problems with Rate Maps

Intrinsic Heterogeneity
 variance depends on mean
 variance depends on base
 Variance Instability
 spurious outliers
 Excess Risk is Non-Spatial
 does not account for spatial autocorrelation

Map Smoothing

Empirical Bayes shrink rates to reference national average regional average = subset average Spatial Rate Smoother spatial moving average spatial range defined by spatial weights

Event and Base

RATE SM	OOTHIN	G				×
Select Variables Ev BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79 SIDR74 SIDR74 SIDR79	ent Variable iables as default	 Image: A state of the state of	B CRESS_ID BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79 SIDR74	ase Varia	ible	
Select variables from file (*.shp) C:\SPACEMAN\DynESDA\wkdata\SIDS.SHP						
Map Themes	Percentile Map Percentile Map Quantile Map Box Map (Hinges Box Map (Hinges	= 1.5)			OK Cancel	

Raw Rate Map

BoxMap (Hinge=1.5) : Raw Rate SID79 w/ BIR79

EB Smoothed Map

BoxMap (Hinge=1.5) : EBS-Smoothed SID79 w/ BIR79

Spatial Rate Smoother

BoxMap (Hinge=1.5) : SRS-Smoothed SID79 w/ BIR79

Regional EB Smoothing

Linking and Brushing

Linking

➢ Views

- different "views" of data
 - statistical graphs: histogram, box plot, scatterplot
 - map
 - Table (list)

Dynamic Linking

- views dynamically linked
 - click on one view and corresponding observations (points, areas) on other views are highlighted

Linking Point and Polygon Maps

Dynamic Linking and Multimedia - panoraMap

Brushing

➢ Brushing

 moving "brush" over map or graph highlights matching observations in other statistical graphs and vice versa

Brushing Scatterplots

recalculates slope of regression line

Geographic Brushing

 simultaneous selecting on multiple maps

Selection in Scatterplot

Map Brushing in DynESDA2

Visualizing Spatial Autocorrelation

Random or Clustered?

Random or Clustered?

Moran's I

Moran's / Spatial Autocorrelation Statistic

• cross-product statistic $I = (N/S_0) \sum_i \sum_j w_{ij} \cdot z_i \cdot z_j / \sum_i z_i^2$ with $z_i = x_i - \mu$ and $S_0 = \sum_i \sum_j w_{ij}$

►Inference

- normal distribution
- randomization
- permutation

Observed (left) and randomized (right) distribution for Columbus Crime

Moran's I = 0.486

Moran's I = -0.003

Moran Scatterplot

Linear Spatial Autocorrelation

- linear association between value at i and weighted average of neighbors:
 Σ_i w_{ii} y_i vs. y_i, or Wy vs y
- four quadrants
 - high-high, low-low = spatial clusters
 - high-low, low-high = spatial outliers

➤ Moran's I

- slope of linear scatterplot smoother
- $\blacksquare = z'Wz / z'z$

Significance Envelope

Reference Distribution (CRIME)

Use of Moran Scatterplot

- Classification of Spatial Autocorrelation
- Local Nonstationarity
 - outliers
 - high leverage points
 - sensitivity to boundary values
- ➢ Regimes
 - different slopes in subsets of the data

Moran Scatterplot Map for Columbus crime four quadrants of the scatterplot (not "significant")

Moran Scatterplot - Regimes

Local Moran

Local Moran Statistic

- $I_i = (z_i / m_2) \Sigma_j W_{ij} Z_j$
- $\Sigma_i |_i = N./$
- Inference
 - randomization assumption
 - conditional permutation
 - Iocal dependence or heterogeneity?
- ➤ Visualization
 - LISA map and Moran Significance Map

LISA MAPS

Space-Time Correlation

Space-Time Moran Scatterplot

Generalized Moran Scatterplot

- Regression slope of Wz_t on z_{t-1}
 - both variables standardized
 - visualization of Wartenberg multivariate Moran statistic
- Significance testing
 - permutation
 - permutation envelope (2.5% and 97.5% from permutation reference distribution)
- Four Types of Association
 - High-high, Low-low; High-low, Low-high

Space-Time Moran Scatterplot

Moran Scatterplot Matrix

Generalized LISA

➤Generalization of Local Moran

- $z_{1i} \times \Sigma_j W_{ij} Z_{2j}$
 - z_1 and z_2 different variables
 - same variable at different times

►Inference

- Null hypothesis
 - random assignment between value of z₁ at i, t and "neighboring" values of z₂

Space-Time Patterns

Space-Time Cluster = Contagion

- High (above avg) values at a location surrounded by High values at different time
 - compare to high-high same time
- Similar for Low-Low
- Space-Time Outlier = Change
 - High (above avg) surrounded by Low (below avg) at different time
 - Similar for Low-High
- Significance based on permutation

Space-Time LISA Maps

Interpretation and Limitations

Most Important

- assessing lack of spatial randomness
- suggests "significant" spatial structure

Multivariate Association

- univariate spatial autocorrelation may result from
 - multivariate association
 - scale mismatch
- need to control for other variables = spatial regression
- LISA Clusters and Hot Spots
 - suggest interesting locations
 - do not explain