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Discrete objects and
continuous fields

= Discrete objects
— accuracy of position
— accuracy of attributes

m Continuous fields
— Z = f(X)
— correct attribute at wrong location, or wrong
attribute at correct location?

— unless singularities can be found and
iIndependently located in the real world

— hilltops, ridges, cliffs



The area class map

m Assigns every location x to a class
— Mark and Csillag term
— ¢ =f(x)
— a nominal field (or perhaps ordinal)
— classified scene
— soil map, vegetation cover map, land use map

= We have no adequate models of uncertainty
for this type of map
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Uncertainty modeling

= Area-class maps are made by a long and
complex process involving many stages,
some partially subjective

= Maps of the same theme for the same area
will not be the same
— level of detall, generalization
— vague definitions of classes
— variation among observers
— measuring instrument error
— different classifiers, training sites
— different sensors



Error and uncertainty

m Error: true map plus distortion

— systematic measurements disturbed by stochastic
effects

— accuracy (deviation from true value)
— precision (deviation from mean value)
— variation ascribed to error

= Uncertainty: differences reflect uncertainty
about the real world
— No true map
— possible consensus map
— combining maps can improve estimates



Madels of uncertainty

m Determine effects of
uncertainty/variation/error on results of
analysis
— If there i1s known variation, the results of a

single analysis cannot be claimed to be
correct

— uncertainty analysis an essential part of
GIS

— error model the preferred term



Traditional error analysis

m Measurements subject to distortion
—Z' =2+0z

m Propagate through transformations
—r=1(2)
—r+0or=1(z + 6z)

m Butfis rarely known

— complex compilation and interpretation

— complex spatial dependencies between elements
of resulting data set



Spatial dependence

m In true values z
m In errors e

m cov(e;,e;) a decreasing positive function
of distance
— geostatistical framework

m Scale effects, generalization as
convolutions of z



Realization

m A single instance from an error model
— an error model must be stochastic
— Monte Carlo simulation

m The Gaussian distribution metaphor

— scalar realizations

— a Gaussian distribution for maps
- an entire map as a realization



The area class map

m Field of nominal values c(x), n>1
— spatially autocorrelated

— In raster, count of I,I joins greater than
expected

= In vector, collection of discrete objects
— nodes, edges, areas in coverage model
— polygons in shapefile model



A collection of discrete objects

m Three conflicts with the observed nature of
area-class maps

= In repeated mappings, positions, attributes,
and numbers of objects will vary (topological
variation)

= Positional uncertainties will vary widely
depending on boundary clarity

= Confusion of attributes will vary within
polygons
— may be greatest in the center
— contrary to the egg-yolk model



suburban

land use type urban






Effects of refining
classification

m Boundaries in coarsely classified maps
preserved In finer classifications

m Boundaries in coarsely classified maps
become polygons at finer classifications



SIX requirements of an error
model for area-class maps

1. Address confusion at every point between
observed class ¢' and consensus class ¢

2. Variation between realizations should
emulate variation between repeated
mappings

3. Autocorrelations in outcomes at nearby
points

4. Emulate effects when maps are
generalized, both thematically and
cartographically



Continued requirements:

.

Realizations should be invariant under
changes In underlying representation,
e.g., raster cell size

Nominal case: results invariant under
reordering of classes

Review known models against these
requirements



1. The confusion matrix

m Useful descriptive device
— quality control

= Comparing classifiers, observers, scales,
accuracies

= p(c’|c)
= Applied per-pixel or per-polygon
= Per-polygon case:

— no within-polygon variation (violates 1)
— no variation in topology (violates 2)

m Per-pixel case: no spatial dependence In
outcomes (violates 3, 5)




2. The epsilon band

m Addresses only positional accuracy in a
fixed topology

= Assumes uniform degree of positional
accuracy

m Violates 1, 2, 4






Models based on vectors of
probabilities

= At every location:

— P(X) ={P1.P2s--,Pn}

— assume raster representation, P constant over cell
= Simple random assignment

— no spatial dependence

— violates 3

— violates 5 since cell size would be evident in
outcomes

= How to induce spatial dependence?



Spatial dependence In
outcomes

® Independent outcomes
— zero spatial dependence between pixels

— perfect positive spatial dependence within
pixels

— Implies pixel size is meaningful
= Induce spatial dependence
— range >> pixel size
— spatial dependence falls smoothly
— Independent of pixel size



3. Simple convolution

m Generate independent outcomes In each
pixel

= Convolve using a modal filter
— Induces spatial dependence
— size of filter determines range of dependence
— satisfies 3, 5

m Posterior proportions not equal to prior
probabllities
— convolution favors more probable classes



4. Sequential assignment

= Goodchild, Sun, and Yang I1JGIS (1992)

= Random field z with controlled spatial
dependence
— U(0,1)
— assign class
— e.g. {0.2,0.3,0.5}
. 1(0.0,0.2); 2 (0.2,0.5); 3 (0.5,1.0)
-z=01,c=1
- z2z=03,c=2
. z=0.8,c=3



Comparing to criteria

Within-polygon variation: yes
Topological variation: yes
Spatial dependence: yes

Generalization: increase cell size,
smooth z, smooth P

Independent of cell size: yes
6. Invariant under reordering: no
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Indicator Kriging

m Assign Class 1, notClass 1

= Among notClass 1, assign Class 2,
notClass 2

m Continue to Class n-1
— notClass n-1 = Class n






Process-based interpretation

m Class | antecedent to class I-1
— e.g. agriculture invaded by urban
— e.g. grassland invaded by forest

— shape of boundary between class | and
class iI-1 determined by class i

— some applications have inherently ordered
classes

- but In this model all classes are ordered



9. Shuffling across realizations

= Shuffling within realizations
unacceptable because of heterogeneity

m Generate N realizations with random
assignment

m Establish target spatial dependencies

= Pick random pixel
— pick random pair of realizations
— swap If closer to target in both realizations






Properties

= No justifying Interpretation
— It works

m Spatial dependence characterized at
pixel level

— no generalization possible, violating 4
m |t satisfies all other criteria



6. Phase-space model

= m dimensional "phase" space defined
by field variables

— partition into n regions

m Generate m random fields to locate x In
phase space

m Assign x to one of n classes
— compare classifiers

= Goodchild and Dubuc (1987)
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Properties of the model

= No specification of P(x)
— two versions of the model

= Independent generation of z in each
realization
— no memory between realizations
— constant proportions

m  Fix z and generate distortions in each
realization
— memory determined by z not by P
— varying proportions
— size of distortion determines amount of variation
between realizations



Properties of the model

m Only classes adjacent in phase space can be
adjacent geographically
m Classifiers provide obvious basis

— but how to calibrate variances, covariances of
random fields?

— how to calibrate in other cases?
— model is over-specified
- but strongly motivated by process
m All criteria satisfied

— generalization by smoothing z, coarsening phase-
space classification



Conclusions

= Understanding of uncertainty should be
process-based

— phase space
— ordinal field
m Spatial dependence and topological variation
are critical
— for applications
— missing in the simpler models

= Some useful methods
— shuffling most practical
— phase space most satisfying



	Models for Uncertainty in Area-Class Maps
	Discrete objects and continuous fields
	The area class map
	Uncertainty modeling
	Error and uncertainty
	Models of uncertainty
	Traditional error analysis
	Spatial dependence
	Realization
	The area class map
	A collection of discrete objects
	Effects of refining classification
	Six requirements of an error model for area-class maps
	Continued requirements:
	1. The confusion matrix
	2. The epsilon band
	Models based on vectors of probabilities
	Spatial dependence in outcomes
	3. Simple convolution
	4. Sequential assignment
	Comparing to criteria
	Indicator Kriging
	Process-based interpretation
	5. Shuffling across realizations
	Properties
	6. Phase-space model
	Properties of the model
	Properties of the model
	Conclusions

