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Discrete objects and 
continuous fields
Discrete objects and 
continuous fields

Discrete objects
– accuracy of position
– accuracy of attributes

Continuous fields
– z = f(x)
– correct attribute at wrong location, or wrong 

attribute at correct location?
– unless singularities can be found and 

independently located in the real world
– hilltops, ridges, cliffs



The area class mapThe area class map

Assigns every location x to a class
– Mark and Csillag term
– c = f(x)
– a nominal field (or perhaps ordinal)
– classified scene
– soil map, vegetation cover map, land use map

We have no adequate models of uncertainty 
for this type of map





Uncertainty modelingUncertainty modeling

Area-class maps are made by a long and 
complex process involving many stages, 
some partially subjective
Maps of the same theme for the same area 
will not be the same
– level of detail, generalization
– vague definitions of classes
– variation among observers
– measuring instrument error
– different classifiers, training sites
– different sensors



Error and uncertaintyError and uncertainty

Error: true map plus distortion
– systematic measurements disturbed by stochastic 

effects
– accuracy (deviation from true value)
– precision (deviation from mean value)
– variation ascribed to error

Uncertainty: differences reflect uncertainty 
about the real world
– no true map
– possible consensus map
– combining maps can improve estimates



Models of uncertaintyModels of uncertainty

Determine effects of 
uncertainty/variation/error on results of 
analysis
– if there is known variation, the results of a 

single analysis cannot be claimed to be 
correct

– uncertainty analysis an essential part of 
GIS

– error model the preferred term



Traditional error analysisTraditional error analysis

Measurements subject to distortion
– z' = z + δz

Propagate through transformations
– r = f(z)
– r + δr = f(z + δz)

But f is rarely known
– complex compilation and interpretation
– complex spatial dependencies between elements 

of resulting data set



Spatial dependenceSpatial dependence

In true values z
In errors e
cov(ei,ej) a decreasing positive function 
of distance
– geostatistical framework

Scale effects, generalization as 
convolutions of z



RealizationRealization

A single instance from an error model
– an error model must be stochastic
– Monte Carlo simulation

The Gaussian distribution metaphor
– scalar realizations
– a Gaussian distribution for maps

• an entire map as a realization



The area class mapThe area class map

Field of nominal values c(x), n>1
– spatially autocorrelated
– in raster, count of i,i joins greater than 

expected
In vector, collection of discrete objects
– nodes, edges, areas in coverage model
– polygons in shapefile model



A collection of discrete objectsA collection of discrete objects

Three conflicts with the observed nature of 
area-class maps
In repeated mappings, positions, attributes, 
and numbers of objects will vary (topological 
variation)
Positional uncertainties will vary widely 
depending on boundary clarity
Confusion of attributes will vary within 
polygons
– may be greatest in the center
– contrary to the egg-yolk model
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Effects of refining 
classification
Effects of refining 
classification

Boundaries in coarsely classified maps 
preserved in finer classifications
Boundaries in coarsely classified maps 
become polygons at finer classifications



Six requirements of an error 
model for area-class maps
Six requirements of an error 
model for area-class maps

1. Address confusion at every point between 
observed class c' and consensus class c

2. Variation between realizations should 
emulate variation between repeated 
mappings

3. Autocorrelations in outcomes at nearby 
points

4. Emulate effects when maps are 
generalized, both thematically and 
cartographically



Continued requirements:Continued requirements:

5. Realizations should be invariant under 
changes in underlying representation, 
e.g., raster cell size

6. Nominal case: results invariant under 
reordering of classes
Review known models against these 
requirements



1. The confusion matrix1. The confusion matrix

Useful descriptive device
– quality control

Comparing classifiers, observers, scales, 
accuracies
p(c' | c)
Applied per-pixel or per-polygon
Per-polygon case:
– no within-polygon variation (violates 1)
– no variation in topology (violates 2)

Per-pixel case: no spatial dependence in 
outcomes (violates 3, 5)



2. The epsilon band2. The epsilon band

Addresses only positional accuracy in a 
fixed topology
Assumes uniform degree of positional 
accuracy
Violates 1, 2, 4





Models based on vectors of 
probabilities
Models based on vectors of 
probabilities

At every location:
– P(x) = {p1,p2,...,pn}
– assume raster representation, P constant over cell

Simple random assignment
– no spatial dependence
– violates 3
– violates 5 since cell size would be evident in 

outcomes
How to induce spatial dependence?



Spatial dependence in 
outcomes
Spatial dependence in 
outcomes

Independent outcomes
– zero spatial dependence between pixels
– perfect positive spatial dependence within 

pixels
– implies pixel size is meaningful

Induce spatial dependence
– range >> pixel size
– spatial dependence falls smoothly
– independent of pixel size



3. Simple convolution3. Simple convolution

Generate independent outcomes in each 
pixel
Convolve using a modal filter
– induces spatial dependence
– size of filter determines range of dependence
– satisfies 3, 5

Posterior proportions not equal to prior 
probabilities
– convolution favors more probable classes



4. Sequential assignment4. Sequential assignment

Goodchild, Sun, and Yang IJGIS (1992) 
Random field z with controlled spatial 
dependence
– U(0,1)
– assign class
– e.g. {0.2,0.3,0.5}

• 1 (0.0,0.2); 2 (0.2,0.5); 3 (0.5,1.0)
• z = 0.1, c = 1
• z = 0.3, c = 2
• z = 0.8, c = 3



Comparing to criteriaComparing to criteria

1. Within-polygon variation: yes
2. Topological variation: yes
3. Spatial dependence: yes
4. Generalization: increase cell size, 

smooth z, smooth P
5. Independent of cell size: yes
6. Invariant under reordering: no





Indicator KrigingIndicator Kriging

Assign Class 1, notClass 1
Among notClass 1, assign Class 2,
notClass 2
Continue to Class n-1
– notClass n-1 = Class n





Process-based interpretationProcess-based interpretation

Class i antecedent to class i-1
– e.g. agriculture invaded by urban
– e.g. grassland invaded by forest
– shape of boundary between class i and 

class i-1 determined by class i
– some applications have inherently ordered 

classes
• but in this model all classes are ordered



5. Shuffling across realizations5. Shuffling across realizations

Shuffling within realizations 
unacceptable because of heterogeneity
Generate N realizations with random 
assignment
Establish target spatial dependencies
Pick random pixel
– pick random pair of realizations
– swap if closer to target in both realizations





PropertiesProperties

No justifying interpretation
– it works

Spatial dependence characterized at 
pixel level
– no generalization possible, violating 4

It satisfies all other criteria



6. Phase-space model6. Phase-space model

m dimensional "phase" space defined 
by field variables
– partition into n regions

Generate m random fields to locate x in 
phase space
Assign x to one of n classes
– compare classifiers

Goodchild and Dubuc (1987)
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Properties of the modelProperties of the model

No specification of P(x)
– two versions of the model
Independent generation of z in each 
realization

– no memory between realizations
– constant proportions
Fix z and generate distortions in each 
realization

– memory determined by z not by P
– varying proportions
– size of distortion determines amount of variation 

between realizations



Properties of the modelProperties of the model

Only classes adjacent in phase space can be 
adjacent geographically
Classifiers provide obvious basis
– but how to calibrate variances, covariances of 

random fields?
– how to calibrate in other cases?
– model is over-specified

• but strongly motivated by process

All criteria satisfied
– generalization by smoothing z, coarsening phase-

space classification



ConclusionsConclusions

Understanding of uncertainty should be 
process-based
– phase space
– ordinal field

Spatial dependence and topological variation 
are critical
– for applications
– missing in the simpler models

Some useful methods
– shuffling most practical
– phase space most satisfying
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