Exploiting Space in Agricultural Economics Models

Gerald C. Nelson University of Illinois, Urbana-Champaign

AAEA/RSS Learning Workshop: Spatial analysis for rural sociology and agricultural economics, July 26, 2003

Outline of Presentation

- Economic theory and the role of location
- Spatial issues in
 - Precision agriculture
 - Rural-urban interface
 - Land use in LDCs

The von Thünen Model

A Featureless Plain

Farm price of vegetables

Farm price of wheat

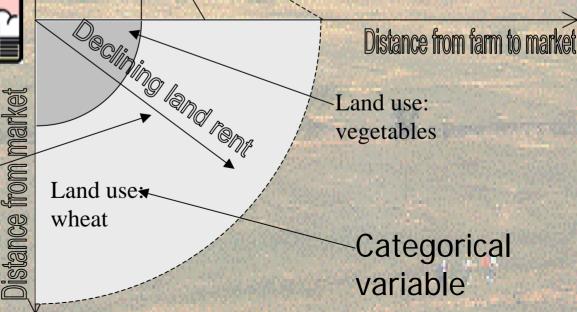
Land use: wheat

Distance from market

Land use: vegetables

Distance from farm to market

The von Thünen Model


A Featureless Plain

Farm price of vegetables

Farm price of wheat

Continuous variable

Economic Theory and Location

Continuous variables

- Production/profit/cost max/min
- Hedonic analysis

- Categorical variables
 - Land use

- Examples
 - Does variable rate technology pay?
 - What is value of open space preservation?
 - When will housing development occur?
 - Do roads cause deforestation?

Basic Spatial Economic Theory: A Location-specific Resource...

- Is operated by individual or group to maximize utility (sometimes profit)
- Has an exogenous set of geophysical and socioeconomic characteristics that influence resource use choices and productivity
- Choice may be influenced by 'neighbors' (Goodchild presentation)

Complications with Categorical Variables

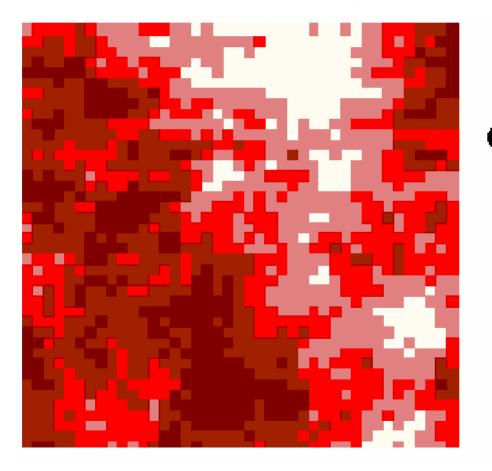
- Decision variable(s) is (are) not observed (latent)
- Observed outcomes are discrete and constant over ranges of the latent variable
- Decision choices can be more complicated
 - E.g., choose among several different production technologies

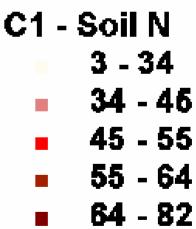
References

- For this presentation
 - Agricultural Economics 27 (3),2002, Special issue on spatial issues for agricultural economists
- Others
 - L. Anselin, R. Florax, S. Rey (eds.) 2003. Advances in Spatial Econometrics, Methodology, Tools and Applications. Berlin: Springer.
 - International Regional Science Review 26 (2), 2003, Special Issue on Spatial Externalities
 - International Regional Science Review, 2004, Special Issue on Land Use

Continuous Data and Spatial Considerations

Variable Rate Technology

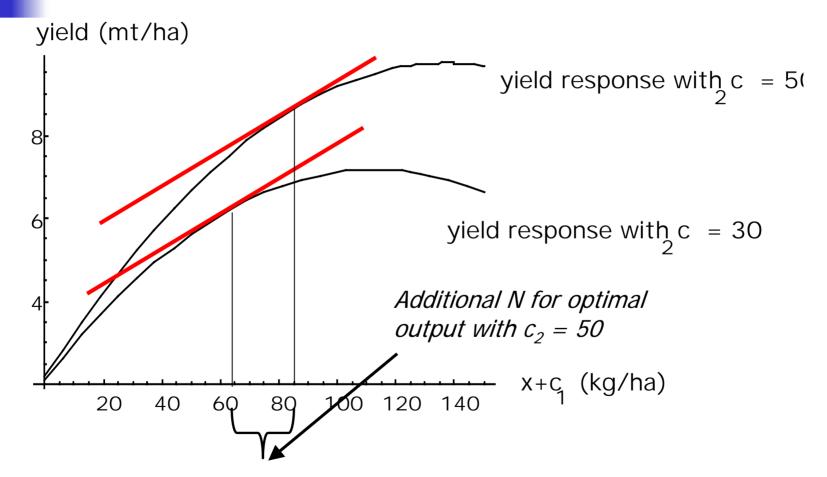

If it's such a good idea, why doesn't anyone use it?


The Problem

- Fields aren't homogeneous
- Collecting information is expensive
 - Soil tests
 - Variable application of inputs
 - Harvest monitoring (yield monitors)

The Problem: Fields aren't Homogeneous

Simulated Soil Nitrogen


Bullock, Lowenberg-Deboer, Swinton

Basic Spatial Management Optimization Problem

$$\max_{x_{ij}} \pi = \sum_{i}^{n} \sum_{j}^{m} p y_{ij} - w x_{ij} - g - v - F \ s.t. \ y_{ij} = f(x_{ij}, c_{ij}, z)$$

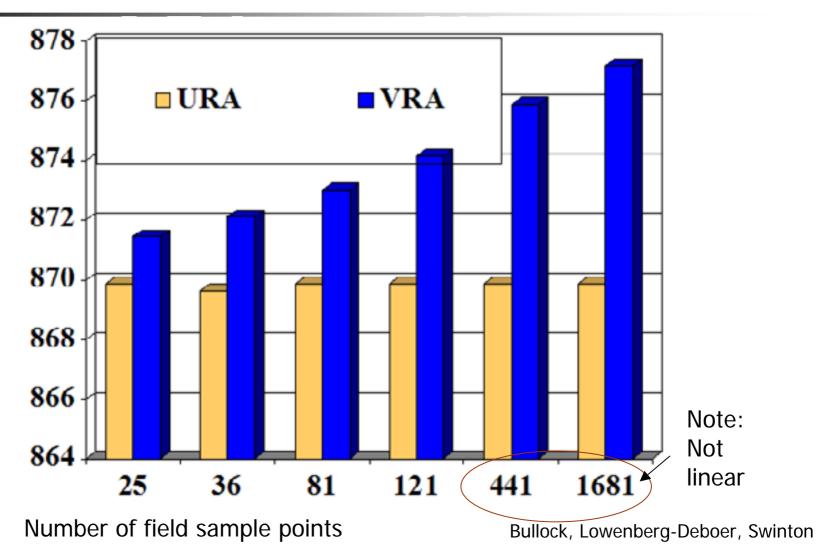
- Maximize quasi-rents
- p, w field-level prices, output and inputs
- y is yield, x is a vector of managed inputs
- **C** vector of site characteristics (e.g., soil nitrogen, depth)
- Z vector of uncontrollable characteristics (e.g. rainfall)
- g are quasi-fixed costs for data collection and management, v are quasi-fixed costs for VRA technology

Simulated Corn Yield Response to Total Nitrogen and Soil Depth

 c_1 – soil nitrogen, x – applied nitrogen, c_2 – soil depth

Bullock, Lowenberg-Deboer, Swinton

How Much Information to Collect?


- Do 'agronomic' experiments to collect response coefficients
- Sample nitrogen at various locations
- What is profit-maximizing information?

Key Spatial Data

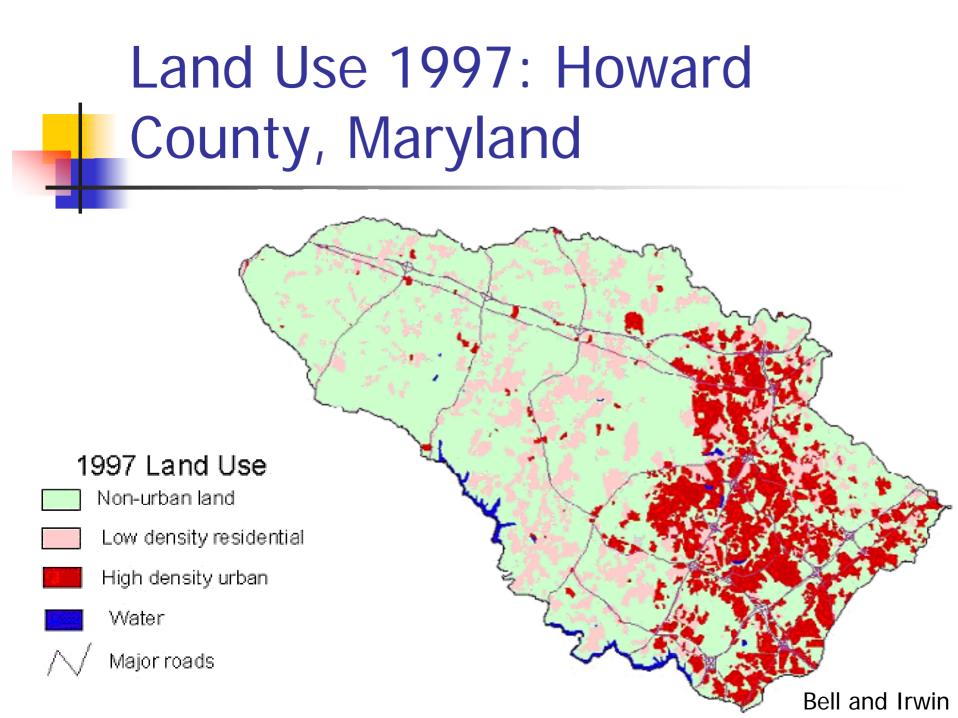
Geophysical – within field

- Soil fertility
- Depth
- Socioeconomic field level
 - VRA costs
 - Geophysical data gathering costs
 - Input and output prices

Gross Margins over Applied Nitrogen Costs, Uniform versus Variable N Application

Land Use Change at the Rural-Urban Interface

Where the Suburbs End


Characteristics of the Interface

- Cost of providing local public services influenced by
 - Pattern of development
 - Rate of land conversion to development
- Environmental effects
 - Reduced water quality due to increased urban runoff
 - Loss and fragmentation of wildlife habitat

Characteristics of the Interface

Changes in land use patterns

- Alter the aesthetics, dynamics, and sense of place
- Are often externalities
- Rich in spatial data
 - Spatial data for tax assessment, emergency services, environmental resource management

Key Drivers of Overall Change

- Improved accessibility of exurban areas
- Changing economic environment in urban areas (e.g., taxes, housing prices, quality of life)
- Changes in the population structure (e.g., more retirees)
- Changes in technology (e.g., telecommuting)

Drivers of Spatial Distribution of Change

- Proximity to employment
- Proximity to other activities (e.g., shopping, recreation, entertainment
- Spatial distribution of
 - public services (e.g., sewer and water)
 - natural features (e.g., rivers, mountains, slope)
- Surrounding land uses of an area
- Zoning policies and other growth management policies

Basic Models

Convert from land use *U* (undeveloped) to *r* if
Today (static)

$$R_{krt|u} \geq R_{kjt|u}; \forall j = 1,..., J$$

In time period t (dynamic)

$$R_{krT|u} - \sum_{t=0}^{\infty} R_{kuT+t} \delta^{T=t} > 0$$
$$R_{krT|u} - R_{kuT} > \delta(R_{krT+1|u})$$

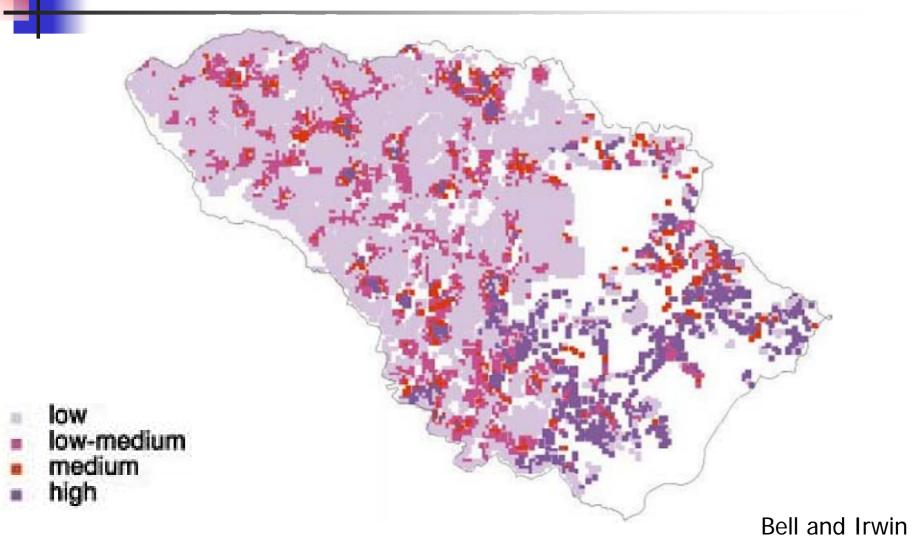
Empirical Modeling

- Survival (Hazard) Analysis
 - When does conversion occur
 - Hazard function conditional probability conversion occurs between t and Δt ,

$$h(t) = \lim_{\Delta t \to 0} \frac{G(t + \Delta t) - G(t)}{\Delta S(t)} = \frac{g(t)}{S(t)}$$

$$S(t) = 1 - G(t)$$
, where $G(t) = Pr(T \le t)$
T - duration length

Empirical Modeling


Hedonic property value models

- Land value y in use h depends on
 - Structure attributes
 - Location attributes

•
$$y^h = X\beta + \varepsilon$$

- h location use, X attributes,
- β marginal willingness to pay for property characteristic

Land Conversion Probability: Howard County, Maryland

Categorical Data

Categorical Data and
Economic Theory
$$R_{hlT}^* = \int_{t=0}^{\infty} \left(P_{hlT+t} Q_{hlT+t} - \mathbf{C}_{hlT+t} \mathbf{X}_{hlT+t} \right) e^{-it} dt$$

Net Present
Value (NPV)Value of
equalsValue of
OutputCost of
InputsDiscount
effect

One optimization for each possible land use h

Then choose land use with highest rent

 $R^{^{\star}}_{hl\mathrm{T}}$ not observable (latent variable)

Nelson and Geoghegan

Estimated Model

- Prob(h=i) = f(G,S,A)
- What is the probability that land use *i* (with highest NPV) is chosen in location *h*?
- This probability is determined by
 - G geophysical variables at location
 - S socioeconomic variables at location
 - A effects from surrounding locations (spatial effects)

Geophysical Variables Determine Possible Choices

- Soil productivity
- Temperature
- Rainfall
- Elevation
- Slope
- Gross and net solar radiation

Socioeconomic Variables Determine Most Profitable Choice

- Location-specific prices (affected by cost of access)
 - Outputs from land use
 - Intermediate inputs
 - Factors of production
 - Cost of access often the only available price information
- Effective security of tenure

Theory Issues

Production/land use choices may have differing temporal dimensions

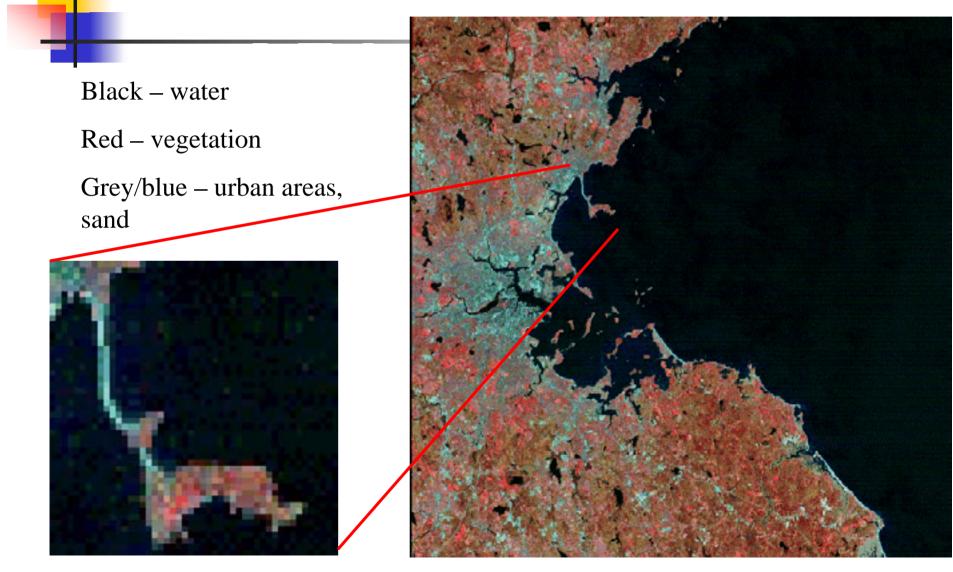
- E.g., trees versus annual agriculture
- Future prices not known; decisionmaking under uncertainty

More Issues

- Not all choices are possible at all locations
 - (E.g., can't have wetlands on steeply sloping parcel)
- Conversion from one land use to another
 - Is costly (cost may be infinite)
 - Is not necessarily symmetric
- Not all potential choices may be present
- Static versus dynamic analysis
 - Deforestation is response to change in incentives (disequilibrium)

Some Problems with Existing Research

- Doesn't account for transition costs or asymmetries
- Doesn't deal well with spatial effects
 - Besag sampling/Kelejian-Pruja statistic
 - Meaningful versus statistical significance
- Data/problem mismatch. What is the
 - Correct unit of analysis?
 - Correct area of analysis?


Interesting Questions

- How do roads affect land use (static analysis)?
- How do roads affect deforestation (dynamic analysis)?
- How will new infrastructure investments affect land use?
- How do changes in property rights regimes affect land use?
- Are location-specific critical resources threatened by ag or macro price changes?

Data Environment

- Statistical agencies don't collect
- Primary data collection (surveys) expensive or impossible
- Satellite images provide alternative

What are 100 m pixels? Boston Harbor False Color Composite

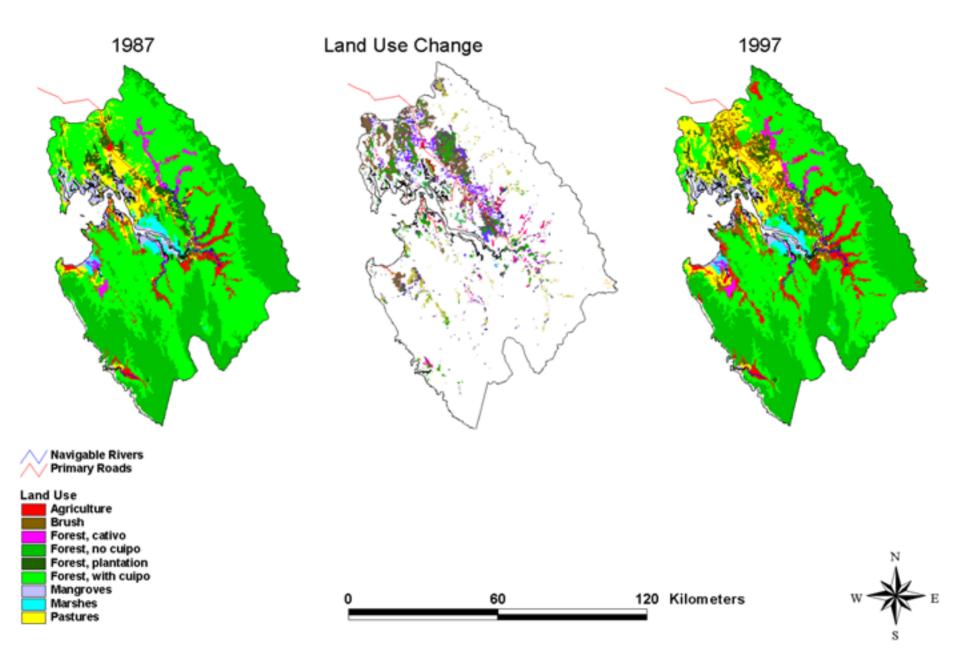
Probability to Prediction

- Logit or probit generates probability estimates for each location
- Predicted land use derived by
 - Land use with highest probability all locations assigned
 - Land use with probability greater than x % (e.g., 50%) – some locations unassigned

Prediction to Simulation

- Change values of right-hand-side variables (simulate new policy/investment)
- Calculate new probabilities
- Do new land use predictions
- Compare to old predictions

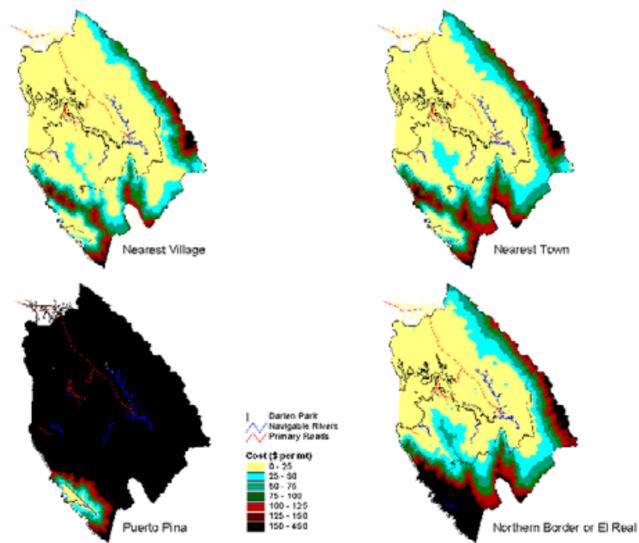
Pave the Pan American Highway in Darién, Panama ?


Darién, Panama Environmental Resources

- Land bridge between N and S America
- Darién National Park
 - UNESCO World Heritage Site, 1981
 - Biosphere Reserve, 1983
- Indigenous population relatively undisturbed

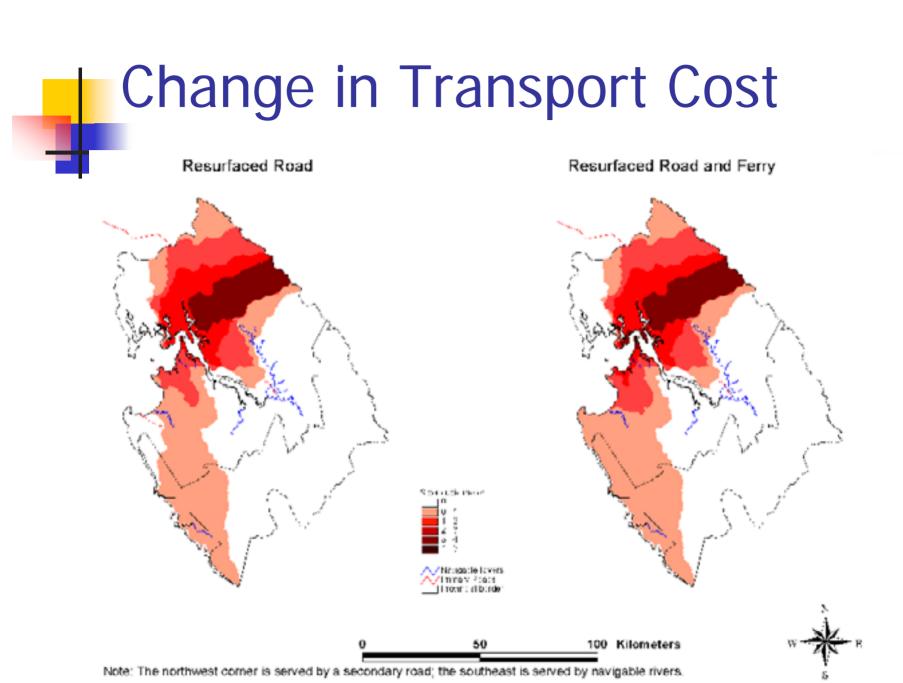
Legal Property Rights

- National park
 - Southern border (with Colombia)
- Cemaco reserve
 - Middle of province, near Pan American highway
- Sambú reserve
 - Southwestern part of province, not near roads


Multinomial Logit Estimation

- Y 5 land use choices
- Geophysical variables
 - Elevation, slope, temperature, soil type
- Socioeconomic variables
 - Cost of access to
 - Nearest 'export' outlet
 - Nearest village
 - Nearest town
 - Pacific port
 - Property rights dummies
- Spatial lag

Data Sources and Manipulation


- 15 land use categories -> 5
 - 3 kinds of forest, "human intervention", marshes
- Elevation, temperature, rainfall
- Location of roads, rivers
- Transport costs along highways
- Some prices
- Calculate cost surfaces, others

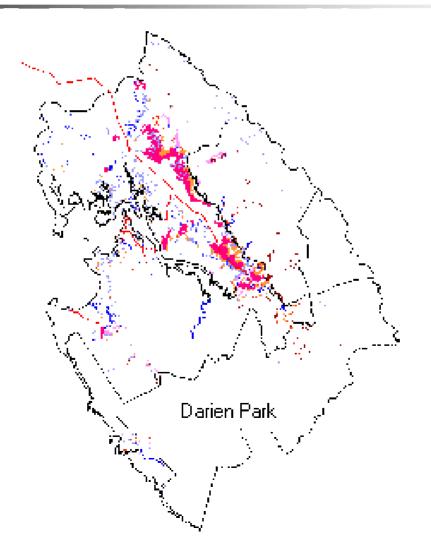
Transport Cost to ...

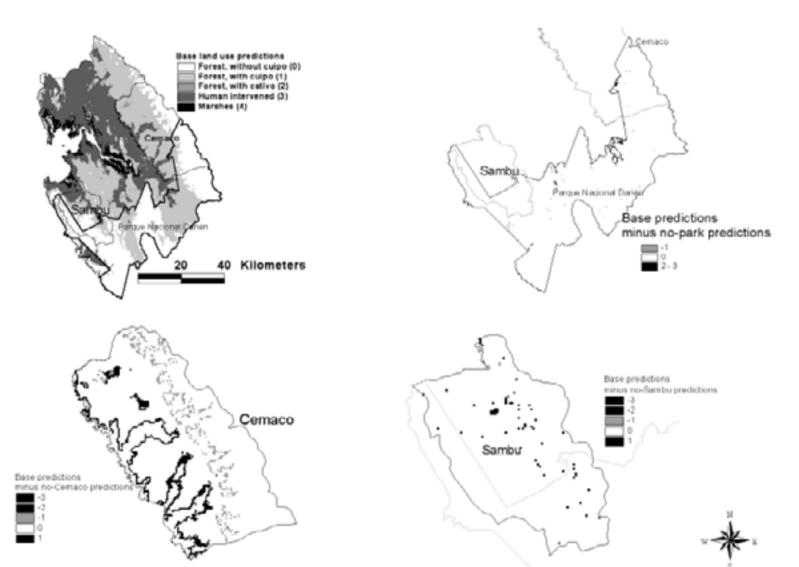
Two Simulations: Effect on Land Use of

- Reduce road transport cost by 50 percent (change cost surfaces)
- Create new property rights (change dummy value from 1 to 0)

Prediction Matrix											
Actual	0	1	2	3	4	Total	Ratio, correct to total				
Forest without cuipo (0)	16,805	1,499	0	51	14	18,369	0.915				
Forest with cuipo (1)	1,000	22,604	11	2,546	187	26,34-8	0.858				
Forest with cativo (2)	0	483	62	272	93	910	0.068				
Human inter- vention (3)	130	748	35	14,631	195	15,739	0.930				
Marsh (4)	0	228	0	632	1,668	2,528	0.660				
Total	17,935	25,562	108	18,132	2,157	63,894					

Spatial Measures of Predictive Power




Identifying the Simulation Effect: The Transition Matrix

Simulated Land Use Categories		Base Land Use Categories								
	0	1	2	3	4	5	6	7	8	Total
Forest without cuipo 0										4,465
Forest with cuipo 1	15		28				25		40	7,238
Forest with cativo 2										31
Disturbed/second-ary/ plantation forest 3		32					103		7	199
Mangrove areas 4		2				4	13			471
Fresh water marshes 5		4								187
Scrub 6		3	4						20	362
Pasture 7		18	5	28	23	0	360		25	2,624
Agriculture 8			2						 	419
Total	4,481	7,188	70	84	475	187	835	2,166	510	15,995

Land Use Change with Road Resurfacing

Effect of Property Right Removal

This presentation will be available (soon) at

http://web.aces.uiuc.edu/wf