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Abstract

This note presents preliminary results from a Monte Carlo study concerning inference with

spatially dependent data. We investigate the impact of location/distance measurement problems

upon the accuracy of parametric and nonparametric estimators of asymptotic variances. We

consider measurement errors in distances, and locations that are known only up to broad areas

like zip codes, SMSAs, or counties.

1 Introduction

Spatial econometric models have proven useful in many areas of economics.1 Economic models

underpinning empirical work in urban, environmental, development, industrial organization, and

growth frequently suggest that observed agents will have outcomes that are not independent. Often

these models suggest a suitable metric or a set of locations in some space that characterizes the

dependence structures among agents. A spatial model is simply a data generating model that
∗The authors would like to thank Jeff Russell and Federico Bandi for helpful comments. Conley gratefully ac-

knowledges funding support from the National Science Foundation.
1An incomplete list of relevant papers is: Case (1991), Case, Hines, and Rosen (1993), Elliott (1993), Moreno and

Trehan (1997), Kelejian and Prucha (1999), Topa (2001), Conley and Topa (2000). A more complete description of

the extent of this literature will appear in a future draft.
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utilizes such a set of locations or distances to define the relationships between agents’ variables.

The notion of space can be general and is certainly not confined to physical or geographic space.

Typical spatial models are parametric models of the dependence between agents, e.g. those used

by Ord (1975), Anselin and Griffith (1988), Case (1991), and Kelejian and Prucha (1999). The most

prevalent models are for Gaussian data with a covariance structure that is a parametric function of

known locations. More recently, nonparametric methods for estimating covariance structure have

been proposed for estimating covariance structure both as a direct object of interest and to conduct

inference about conditional mean estimates, see e.g. Hall, et al. (1992), Conley (1999).

The key ingredient in any spatial model is the choice of locations for the observed agents, the

space or metric. There are clearly some applications where the agents locations are known with

certainty. For example, in an environmental application where local weather conditions constitute

the major source of dependence, agents’ physical locations may be available and be the most

appropriate coordinates to use in a spatial model. However, it is routinely the case that agents’

locations are not known with certainty. It is very common for information about agents’ physical

locations to be imprecise, e.g. locations to be known only within an area— census tract, zip code,

county, or SMSA. Moreover, in many applications the most appropriate metric may not be physical

distance. For example, the travel time between locations, an object that must be estimated and

cannot be known with certainty. Thus it is common for the econometrician’s measurements of

distance to be imprecise or measured with error.

Imperfect distance measurements create problems for parametric models of spatial covariance.

Unless they include an explicit treatment of the measurement error process, parametric models

will generally be misspecified and inconsistent when distances/locations are measured with error.2

To our knowledge, such an explicit modeling of measurement errors has not been done, perhaps

because of the lack of guidance about such errors from economics. In contrast, the nonparametric

inference procedure in Conley (1999) is consistent with bounded measurement errors and generally

robust in practice to either measurement errors or imprecision in distances. Imprecise locations

will pose less of a problem for parametric estimators, provided the appropriate calculations are

done to infer the properties of the aggregated process from that assumed for individuals. Spatial

2See Griffith and Lagona (1998) for results on the inconsistency of MLE estimators of spatial correlations when

locations are misspecified.
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aggregation will undoubtedly reduce the available information and thus the precision of parametric

estimators. Of course, a reduction in precision will occur for nonparametric estimators as well,

though it may be less severe for estimators that require only broad definitions of near and far sets

of observations.

This paper presents a Monte Carlo study that investigates the impact of these two types of loca-

tion/distance measurement problems upon the accuracy of estimators of the asymptotic variances

of sample averages. In particular we compare the performance of parametric asymptotic variance

estimators to the nonparametric asymptotic variance estimator of Conley (1999) when agents’ lo-

cations are measured with error and measured imprecisely (up to census tracts or zip codes). We

consider a stationary, mixing data generation model and use an increasing domain asymptotic ap-

proach. Asymptotic covariances for averages of spatial data are sums of spatial autocovariances,

analogous to the asymptotic variance of averages of covariance stationary time series. The para-

metric estimators rely on estimating the autocovariance function and then inferring its sum, an

approach that is derailed by misspecification of the covariance function arising from distance er-

rors. The nonparametric estimator can be viewed as directly estimating the sum of covariances

and this is what allows it to remain consistent and robust in practice with distance errors.

We address three main questions in the experiments we conduct. First we address the question of

how much measurement error in distances/locations is required for the parametric model to perform

worse than the nonparametric one. Despite the fact that the parametric model will be inconsistent,

we expect it to outperform the nonparametric model, e.g. in terms of mean squared error, in

finite samples with amounts of measurement error that are small enough. Next, we investigate

how estimators’ precision varies with neighborhood size when locations are only measured up to

neighborhood of residence. We expect that precision of both estimators will decline with an increase

in neighborhood size, holding constant the dependence across individuals. The relevant question

is the magnitude of these decreases for each estimator and their relative performance. Finally, we

investigate the potential of a specification test that compares the nonparametic versus parametric

estimators of asymptotic variances. Our simulations provide us with the small sample distribution

of test statistics under the null hypothesis of no distance/location error (and a correctly specified

covariance model). We construct critical values using the simulations under the null and use them

to calculate power for alternatives given by the measurement error models in our experiments. We
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conjecture that this may be in some sense a best-case scenario for power versus these alternatives

that might be obtained from a test using critical values coming from a large sample approximation.

The remaining sections of the paper are organized as follows. Section two presents the data

generating model and our two estimators. Section three presents our design of data generating

processes for data and location/distance errors, as well as the specific forms for estimators we use

in our simulations. Section four concludes this paper by presenting our preliminary results. We

defer concluding remarks for a future draft.

2 Econometric Model and Estimation Problem

The econometric model we use assumes there is a population of agents residing at d-dimensional

integer lattice locations with one individual per location. We focus on an expectation zero process

Xs indexed on this lattice that is assumed to be mixing (Xsi and Xsj approach independence as

the distance between si and sj grows). For simplicity, we also assume the process is stationary:

the joint distribution of Xs for a collection of locations is invariant to translation and so, assuming

second moments exist, E{XsXs+h} = C(h). The econometrician’s sample consists of realizations of
agents’ random variables Xs at a collection of locations {si} inside a sample region Λτ . We use the
notation |Λτ | to denote the number of agents in our sample region and, for simplicity, assume that
all locations in Λτ are sampled. When taking limits, we view Λτ as one of a sequence of regions

that grow to Zd, an increasing domain approach to asymptotic approximations.

We are interested in conducting inference about EX using the usual large-sample distribution

approximations for the sample average of points in Λτ : X̄ = 1
|Λτ |

P|Λτ |
i=1 Xsi . To do this, we need

to estimate the asymptotic variance of a normalized sample mean. Using, for example, the central

limit theorem due to Bolthausen (1982) for stationary, mixing random fields on regular lattices,

we know that (under mixing and moment conditions) the normalized sample mean has a limiting

normal distribution:

1p|Λτ |
|Λτ |X
i=1

Xsi → N (0, V ) . (1)

The general form for the asymptotic covariance V is as an infinite sum of an autocovariance function
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C(h). Referring to the entries of the vector h individually as k1, k2, ...., kd , V has the form:

V =
∞X

k1=−∞
...

∞X
kd=−∞

C (k1, k2, ...., kd) .

Thus if d = 1, the expression for V coincides with the asymptotic variance of a sample mean for a

covariance stationary time series: V =
P∞
k1=−∞C (k1) .

We are interested in comparing the performance of parametric and nonparametric estimators of

V when locations are imperfectly measured. We examine a parametric estimator that corresponds

to an assumption that the covariance function is known up to a finite-dimensional parameter vector

so it can be written as C(h; θ). We compute a minimum distance estimator θ̂ and then compute a

parametric estimator V̂P by plugging in the estimate θ̂, and calculating the sum of C(h; θ̂). When

using specific locations, we minimize the distance from a vector of sample analog covariance esti-

mates for displacements h and C(h; θ).When we have only neighborhood locations, we choose θ̂ by

minimizing the distance between the parametric expression for covariances between neighborhood

aggregates and their sample analogs. In the presence of measurement error in distances, C(h; θ) will

generally be misspecified and the resulting estimator for V inconsistent. However, the parametric

estimator using neighborhood aggregates is properly specified and so of course remains consistent.

Our nonparametric estimator of V is that proposed by Conley (1999). This method is a straight-

forward generalization of spectral density estimators known since at least Bartlett (1950). With

specific location/distance measurements, we estimate V as:

V̂N =
1

|Λτ |
|Λτ |X
i=1

|Λτ |X
j=1

K (si − sj) ·
¡
Xsi − X̄

¢ · ¡Xsj − X̄¢ (2)

where the N subscript refers to nonparametric and dependence on sample size is suppressed. K (·)
is a kernel which will be used to weight the observations, and is such that K (0) = 1, K (h) is

uniformly bounded, and K (h) → 1 for all h as τ → ∞, slowly enough so that the variance of V̂N
collapses to zero. The kernel K can be chosen so that V̂N will be positive in sample, however we

use a uniform kernel for simplicity. V̂N will remain consistent in the presence of all but extreme

specifications of measurement error because all locations’ displacements h will eventually have a

weight approaching 1 (see Conley (1999) for a proof with bounded location measurement error).

This estimator will also be robust to moderate location/distance measurement errors in practice as

mismeasured locations weightings under the kernel will generally be close to the weight they would
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get with perfectly measured locations. The only exceptions will occur for pairs of observations near

the edge of the support of the kernel K. For example, if K is uniform kernel equal to one only for

displacements with length less than L, only those pairs of observations whose true displacement

lengths are in a neighborhood around L will have different weights from those for true displacements.

Typically these misweighted observations are small fraction of the total with moderate measurement

errors. With zip-code level location information, we use (2) but replace the weight K (si − sj) with
a uniform kernel weight that depends only on the distance between the centers of neighborhoods

for observations i and j. This estimator remains consistent for weights that converge to one for all

neighborhood distances at an appropriate rate.

3 Data Generating Processes for Simulations

This section describes the data generating processes (DGP) for Xs and the measurement error

process for locations that we use in our simulation experiments. In this preliminary draft we

consider a process indexed in only one dimension, future drafts will use DGPs with at least a two-

dimensional index. We run three sets of experiments each with the same DGP for Xs, but with

differing structures for the location information. In all cases we simulate 1000 Monte Carlo samples

with |Λτ | = 500.

3.1 DGP for X

The DGP we consider for Xs is a finite-order two-sided moving average with geometrically declining

weights:

Xs = ρmus−m...+ ρ2us−2 + ρus−1 + us + ρus+1 + ρ2us+2 + ...ρ
mus+m (3)
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where us is IID N(0,σ2). As this process is a finite-order moving average, V =
2mP

k=−2m
C (k) with

C(k) being given by:

C (k; ρ,σ) =



σ2

Ã
1 + 2

mP
j=1

ρ2j

!
if k = 0

σ2

"
(|k|+ 1)ρ|k| + 2ρ2+|k|

m−|k|−1P
j=0

ρ2j

#
if |k| ≤ m− 1

σ2 [(m+ 1) ρm] if |k| = m

σ2(2m− |k|+ 1)ρ|k| if m+ 1 ≤ |k| ≤ 2m

0 otherwise

. (4)

In the Monte Carlo simulations which follow, we choose m = 3. In this case, the explicit

expression for V is:

V = σ2
¡
4ρ6 + 8ρ5 + 12ρ4 + 12ρ3 + 8ρ2 + 4ρ+ 1

¢
. (5)

To illustrate how V varies with the decay parameter ρ, we take σ2 = 1 and plot V below with the

dot-dash line, for different values of ρ. For comparison we also plot with a solid line the asymptotic

variance for a first-order autoregression with correlation parameter ρ and an innovation variance

of one: 1
(1−ρ)2 .
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3.2 Measurement Error/ Neighborhood Designs

We run three sets of simulation experiments with the same DGP for Xs but different specifi-

cations/treatments for location information. In the first experiment, we assume that the exact

locations are known and used in estimation. In the second and third experiments, we analyze how

the competing methods perform when locations or distances are measured with error, and when

they are measured correctly but imprecisely. We model errors in economic distances as erroneously

measured positions {si}. When locations are measured imprecisely, we assume that all is known
about each observation is that it resides in a given neighborhood, but the relative positions of

observations within a neighborhood are unknown.

Locations Error

We tried to choose a specification for location measurement error that would correspond to

measured locations being in the right ballpark but perhaps often not exactly correct . Having

potentially many locations a little bit off but few if any dramatically off seems to us the most

empirically relevant situation.

We model location measurement errors by perturbing locations with the following algorithm.

First assign each agent’s true location integer coordinates from 1 to |Λτ |. Each agent’s integer
location is independently perturbed by adding a random amount ξ from a uniform distribution on

[-v,v]. In other words agent i is given a perturbed location s̃i = si+ξi. Then, each agent’s measured

location is defined by a re-labeling of the perturbed locations {s̃i} from 1 to |Λτ | , according to the
rank order of the {s̃i} from smallest to largest. We vary the amount of reshuffling of agents’

locations by changing the magnitude of v.

We present results for seven different levels of v which we will refer to as levels one through seven.

Tables 1 and 2 are meant to provide some sense of how much change in locations is induced by each

level of measurement error. The percentages of agents’ measured locations that are different from

their true locations by 1 to 6 units are given by Table 1. Table 2, contrasts the true autocorrelations

for Xs with an approximation for the autocorrelations under each level of measurement error

(calculated as the average across 1000 Monte Carlo simulations of length 1000 each).
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Table 1: Degree of Deviations of Measured Locations from True Locations

v Percentage at 1 Unit 2 Units 3 Units 4 Units 5 Units 6 Units

True Location Off (%) Off (%) Off (%) Off (%) Off (%) Off (%)

Level 1 1.0 75.0% 25.0% 0% 0% 0% 0% 0%

Level 2 1.5 51.8% 42.0% 6.2% 0% 0% 0% 0%

Level 3 2.0 36.8% 45.5% 15.9% 1.8% 0% 0% 0%

Level 4 2.5 27.5% 42.7% 23.1% 6.2% 0.5% 0% 0%

Level 5 3.0 21.5% 37.9% 26.5% 11.5% 2.4% 0.2% 0%

Level 6 3.5 17.6% 33.0% 26.9% 15.9% 5.6% 1.0% 0%

Level 7 4.0 14.7% 28.9% 25.7% 18.5% 9.1% 2.7% 0.4%

Table 2: True Correlations vs. Correlations with Different Levels of Location Errors

v C(1)
C(0)

C(2)
C(0)

C(3)
C(0)

C(4)
C(0)

C(5)
C(0)

C(6)
C(0)

True Correlations 0 0.599 0.287 0.119 0.030 0.007 0.001

Level 1 1.0 0.522 0.317 0.137 0.044 0.010 0.000

Level 2 1.5 0.445 0.321 0.169 0.068 0.021 0.004

Level 3 2.0 0.382 0.304 0.192 0.096 0.038 0.010

Level 4 2.5 0.330 0.278 0.202 0.123 0.059 0.024

Level 5 3.0 0.290 0.253 0.199 0.136 0.081 0.039

Level 6 3.5 0.255 0.230 0.191 0.144 0.096 0.057

Level 7 4.0 0.229 0.209 0.180 0.143 0.106 0.071
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Grouping of Locations by Neighborhood

In order to examine the impact of imprecise location information, we divide the line into neigh-

borhoods (that is, in this case, intervals). Estimation will proceed as though agents’ locations

are known only up to these neighborhoods. We index neighborhoods of M agents each with

j = 1, . . . , J . We let Yj denote the spatially aggregated version of Xs, i.e.: Yj is the sum of Xs for

the M agents within neighborhood j.

We consider three different neighborhood sizes: M = 3, 6, 9. As M increases from 3 to 9, the

correlation across neighborhoods decreases. We define a distance between neighborhoods using

the difference between their integer indices j. Letting covariance function for Y be denoted by

CY (`) = E (YjYj+`) , it takes the form in terms of ρ and σ of:

M = 3⇒ CY (`) = σ2 ·



3 + 12ρ2 + 10ρ4 + 6ρ6 + 8ρ+ 8ρ3
¡
1 + ρ2

¢
if |`| = 0

2ρ+ 2ρ3
¡
1 + ρ2

¢
+ 6ρ2 + 10ρ4 + 12ρ3 + 2ρ5 if |`| = 1

3ρ4 + 4ρ5 + 3ρ6 if |`| = 2
0 if |`| ≥ 3

M = 6⇒ CY (`) = σ2 ·


6 + 36ρ2 + 40ρ4 + 12ρ6 + 20ρ+ 20ρ3

¡
1 + ρ2

¢
+ 24ρ3 + 4ρ5 if |`| = 0

2ρ+ 2ρ3
¡
1 + ρ2

¢
+ 6ρ2 + 16ρ4 + 12ρ3 + 10ρ5 + 6ρ6 if |`| = 1

0 if |`| > 1

M = 9⇒ CY (`) = σ2 ·


9 + 60ρ2 + 76ρ4 + 24ρ6 + 32ρ+ 32ρ3

¡
1 + ρ2

¢
+ 48ρ3 + 16ρ5 if |`| = 0

2ρ+ 2ρ3
¡
1 + ρ2

¢
+ 6ρ2 + 16ρ4 + 12ρ3 + 10ρ5 + 6ρ6 if |`| = 1

0 if |`| > 1

(6)

3.3 Specific Estimators Used in Simulations

Parametric Estimators

The parametric estimators used in the simulations are based on a minimum distance approach.

For the case of locations exactly measured or measured with error, we first estimate the sample

analogs of the correlation functions of X : Γ (ρ) =
h
C(1;ρ,σ)
C(0;ρ,σ) , ...,

C(6;ρ,σ)
C(0;ρ,σ)

i
, obtaining a vector Γ̂ =
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h
Ĉ(1)

Ĉ(0)
, . . . , Ĉ(6)

Ĉ(0)

i
. We then estimate ρ̂ as:

ρ̂ = argmin
ρ

h
Γ (ρ)− Γ̂

i0 h
Γ (ρ)− Γ̂

i
.

Once we have the estimate ρ̂, we can estimate σ2 by means of equation (4). In particular, we can

use the sample variance of Xs as an estimate of C (0), and then solve for σ2 as follows:

σ̂2 =
Ĉ (0)

1 + 2
mP
j=1

ρ̂2j
(7)

Once we have these estimates, we can get V̂P by plugging ρ̂ and σ̂2 in (5).

The estimator used in the case of grouping of locations by neighborhood follows a similar

strategy. Again, we first estimate the sample analogs of the correlation functions of Y : ∆ (ρ) =h
CY (1)
CY (0)

CY (2)
CY (0)

i
for M = 3, and ∆ (ρ) =

h
CY (1)
CY (0)

i
if M = 6, 9. We then get our estimate ρ̂ by the

minimum distance estimator:

ρ̂ = argmin
ρ

h
∆ (ρ)− ∆̂

i0 h
∆ (ρ)− ∆̂

i
Once we have the estimate ρ̂, we again estimate σ2 by means of equation (4), and then plug ρ̂ and

σ̂2 in (5) to get a parametric estimator which, with some abuse of notation, we will also refer to as

V̂P as the estimator refered to will be clear from context.

Nonparametric Estimators

The nonparametric estimator used in the simulations with individual locations measured (per-

haps with error) is that in expression (2), with

K (si − sj) =
 1 if |si − sj | < L = 8
0 otherwise

. (8)

In the simulatons with neighborhood-level location information, the weight function K is taken to

be a uniform kernel that is one for neighborhoods that contain individuals with distances less than

or equal to 8. We again abuse notation and use V̂N to refer to all versions of these nonparametric

estimators.
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4 Results

This Section reports the results of 1000 repetitions of a Monte Carlo experiment based on a sample

of size |Λτ | = 1000 and with the following parameters: σ2 = 1, ρ = 1/3, which imply a value of

V = 3.8532. We present results on the performance of our two estimators and for power of two

potential specification tests based on discrepancies between V̂P and V̂N .

4.1 V Estimator Performance

Tables 3 and 4 collect the results obtained when the locations are perfectly measured and when

we have location errors of level one through seven. Table 3 reports Bias and Root Mean Squared

Error (RMSE) for V̂P and V̂N , as well as coverage probabilities for 95% confidence intervals for EX

constructed using the alternative variance estimators. Table 4 reports the 10th, 30th, 50th, 70th

and 90th deciles of the distribution of V̂P and V̂N with true and error-ridden locations.

Table 3 shows that when the true locations are used, the bias associated with V̂N is bigger than

that associated with V̂P . However, as the level of the location errors ranges from one to seven,

the bias of the parametric estimator increases sharply (in absolute terms), and already at level 2 is

bigger than that of V̂N . As the level of location errors increases from three to seven, the bias of the

parametric estimator grows almost linearly. The bias of the nonparametric estimator is relatively

constant with respect to the different levels of location errors. A similar pattern can be observed

when looking at the RMSE: the RMSE associated with the nonparametric estimator is higher than

that associated with the parametric one with true locations. However, if locations are incorrectly

measured, the nonparametric estimator’s performance varies little as the level of location errors

increases. In contrast, the RMSE of the parametric estimator deteriorates rapidly. As soon as

location errors of level 4 and higher are introduced, both the bias and the RMSE of the parametric

estimator get worse than that of the nonparametric estimators. The behavior of the RMSE of the

two estimators can be in part explained looking at the deciles of their distributions, reported in

Table 4. When the locations are accurately measured, the distribution of the parametric estimates

is less spread out and it is centered closer to the true value of V than the nonparametric one.

The introduction of location errors implies a shift of the distribution of the parametric estimates

towards the left. Although the distribution does not spread out much, the increased bias drives
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up the RMSE. The distribution of the nonparametric estimator is relatively unaffected by the

introduction of the location errors.

Perhaps the best measure of these estimators’ performance is their coverage probabilities. The

95% confidence intervals for EX constructed using V̂N cover the zero in approximately 95% of the

Monte Carlo draws for all levels of location errors. In contrast, the coverage probabilities of the

95% confidence intervals constructed using V̂P deteriorate with a rise in the level of the location

errors. While the coverage probability is slightly higher than 95% with location errors of level one,

it goes down to 88.4% with location errors of level seven.

Tables 5 and 6 collect the results obtained when the locations are perfectly measured, and when

we have imprecisely measured locations, with neighborhoods of sizes 3, 6, and 9. Table 5 reports

Bias and Root Mean Squared Error (RMSE) for the parametric and nonparametric estimators of

V , as well as coverage probabilities for 95% confidence intervals for EX constructed using the

alternative variance estimators. Table 6 reports the 10th, 30th, 50th, 70th and 90th deciles of the

distribution of the estimators of V using neighborhood aggregates.

As the neighborhood size increases, the bias of the parametric estimator does not increase much,

while that of the nonparametric estimator is more sensitive to locations grouping. However, the

RMSE of the nonparametric estimator stays roughly constant over the different levels of aggregation,

while that of the parametric estimator keeps increasing, and ends up being, for neighborhoods of

size 9, almost three times bigger than that of the nonparametric estimator. Looking at the deciles of

the distributions of the parametric and nonparametric estimators, reported in Table 6, we observe

that the selected deciles of the nonparametric estimator don’t change much as the neighborhood

size increases. On the other hand, those of the parametric estimates get more and more spread out

and the median tends to decrease.

In terms of coverage probabilities, the 95% confidence intervals for EX constructed using the

nonparametric estimates of V cover the zero in approximately 94.6% to 93.2% of the cases as

the neighborhood size increases from 3 to 9. The coverage probabilities of the 95% confidence

intervals constructed using the parametric estimates deteriorate much faster with the size of the

neighborhoods. In particular, while it is slightly below 95% with neighborhoods of size 3, it goes

down to 77.3% with neighborhoods of size 9.

13



4.2 Investigation of Potential for Specification Tests

When locations/distances are potentially measured with error, a good specification test for the joint

null hypothesis that distances and the parametric model are correct would clearly be useful. In this

subsection, we use our simulations to investigate the potential performance of specification tests

based on discrepancies between V̂P and V̂N . We investigate the power of one and two-sided tests

based on (V̂P − V̂N). Figures 1 and 2 plot kernel density estimates of the sampling distribution of
(V̂P−V̂N) with true locations and locations resulting from our measurement error models. Likewise,
Figures 3 and 4 plot analogous density estimates for (V̂P − V̂N)2 for this set of models. We view
these exercises as being an optimistic scenario for test performance since in practice critical values

would likely need to come from a distribution approximation in order for the test to be useful in

situations without a full DGP specification.

We constructed a 5% critical value for a two-sided test of the null hypothesis that the distances

and covariance model are correct using the 95th percentile of the simulated distribution of (V̂P−V̂N)2

with correct distances. We then calculated the proportion of (V̂P − V̂N)2 statistics that were greater
than this critical value under each alternative measurement error level. The resulting estimates

of the probability of (correctly) rejecting the null under these seven alternative hypotheses are

collected in the first column of Table 7. The results are not particularly encouraging as power

remains less than 1/2 until level 6.

However, we think that in practice it may be useful to conduct a specification test under the

assumption of partial information on location of the distribution of (V̂P − V̂N) under the relevant
alternatives. In particular, it may be plausible to assume that the V̂P will underestimate V more

than V̂N under the alternative distribution, i.e. that the distribution of (V̂P − V̂N ) under the
alternative will be largely to the left of its distribution under the null. Therefore, we investigate a

one-sided test with critical value obtained as the 5th percentile of the simulated distribution of (V̂P−
V̂N ) with correct distances. The resulting estimates of the probability of rejecting the null under

these seven alternative hypotheses are collected in the second column of Table 7. Unsurprisingly,

power performance is much better with the one-sided test. Future drafts will contain an attempt

to formally characterize the set of alternatives where one-sided tests will be desireable.
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Parametric Nonparametric Parametric Nonparametric Parametric Nonparametric
True Locations -0.0330 -0.1149 0.5790 0.8785 0.9540 0.9470
Level 1 Location Errors -0.0669 -0.0441 0.5985 0.8734 0.9530 0.9520
Level 2 Location Errors -0.2354 -0.0434 0.6576 0.8669 0.9490 0.9510
Level 3 Location Errors -0.4853 -0.0552 0.7879 0.8564 0.9380 0.9520
Level 4 Location Errors -0.7583 -0.0590 0.9734 0.8542 0.9270 0.9500
Level 5 Location Errors -1.0443 -0.0794 1.1956 0.8417 0.9070 0.9500
Level 6 Location Errors -1.2975 -0.1178 1.4110 0.8423 0.8940 0.9500
Level 7 Location Errors -1.4961 -0.1724 1.5784 0.8351 0.8840 0.9500

Deciles: 10% 30% 50% 70% 90%
Parametric 3.1338 3.4852 3.7561 4.0872 4.5967
Nonparametric 2.6777 3.2075 3.6743 4.1648 4.8844
Parametric 3.0957 3.4320 3.7229 4.0582 4.5742
Nonparametric 2.7544 3.2862 3.7415 4.2337 4.9303
Parametric 2.8957 3.2656 3.5697 3.9123 4.4430
Nonparametric 2.7217 3.3069 3.7373 4.2424 4.9689
Parametric 2.6571 3.0092 3.3127 3.6620 4.1963
Nonparametric 2.7445 3.2853 3.7398 4.2022 4.9742
Parametric 2.3705 2.7266 3.0503 3.3680 3.9039
Nonparametric 2.7473 3.2959 3.7623 4.2224 4.9153
Parametric 2.1027 2.4585 2.7706 3.0751 3.5638
Nonparametric 2.7757 3.2838 3.6882 4.1784 4.8618
Parametric 1.9137 2.2282 2.4933 2.7946 3.2829
Nonparametric 2.7332 3.2789 3.6561 4.1346 4.8389
Parametric 1.7623 2.0577 2.3032 2.5705 3.0178
Nonparametric 2.6686 3.1970 3.6316 4.0618 4.7432

Level 5 Location Errors

Level 6 Location Errors

Level 7 Location Errors

Table 4: Selected Deciles for V Estimators with True and Error-ridden Locations 

True Locations

Level 1 Location Errors

Table 3: Bias, Root MSE and 95% CI Coverage Probabilities for V Estimators with True and Error-ridden Locations 

Table notes: sample size = 500, rho = 1/3, and the true value of V = 3.8532.

Table notes: sample size = 500, rho = 1/3, and the true value of V = 3.8532.

Bias Root MSE 95% CI Coverage Probability

Level 2 Location Errors

Level 3 Location Errors

Level 4 Location Errors



Parametric Nonparametric Parametric Nonparametric Parametric Nonparametric
Exact, True Locations -0.0330 -0.1149 0.5790 0.8785 0.9540 0.9470
Neighborhood Group Size = 3 -0.0634 -0.1841 0.9721 1.0787 0.9480 0.9430
Neighborhood Group Size = 6 -0.1593 -0.1630 2.5666 0.9777 0.8630 0.9460
Neighborhood Group Size = 9 -0.0020 -0.2244 3.4497 1.2214 0.7730 0.9320

Deciles: 10% 30% 50% 70% 90%
Parametric 3.1338 3.4852 3.7561 4.0872 4.5967
Nonparametric 2.6777 3.2075 3.6743 4.1648 4.8844
Parametric 2.5839 3.2047 3.7386 4.2559 5.0946
Nonparametric 2.3616 3.0631 3.5987 4.1737 5.0124
Parametric 0.6450 1.7571 3.2875 4.9251 7.5874
Nonparametric 2.5122 3.1436 3.6276 4.1389 4.9318
Parametric 0.2324 0.6258 2.6149 6.9130 8.8112
Nonparametric 2.1975 2.9249 3.4845 4.2088 5.2269Neighborhood Group Size = 9

Table 6: Selected Deciles for V Estimators with Neighborhood-level Locations 

Exact, True Locations

Neighborhood Group Size = 3

Neighborhood Group Size = 6

Table notes: sample size = 500, rho = 1/3, and the true value of V = 3.8532.

Table 5: Bias, Root MSE, and Coverage Probabilities for V Estimators with Neighborhood-level Locations 
Bias Root MSE 95% CI Coverage Probability

Table notes: sample size = 500, rho = 1/3, and the true value of V = 3.8532.



Alternative Hypothesis v

Level 1 Location Errors 1.0 0.036 0.064
Level 2 Location Errors 1.5 0.038 0.100
Level 3 Location Errors 2.0 0.085 0.217
Level 4 Location Errors 2.5 0.236 0.448
Level 5 Location Errors 3.0 0.448 0.698
Level 6 Location Errors 3.5 0.654 0.834
Level 7 Location Errors 4.0 0.751 0.899

Table 7: Power for One and Two-sided Specification Tests 
Power of the 

Two-sided Test 
at 5%

Power of the 
One-sided Test 

at 5%
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Figure 1: Densities of VP - VN  for Different Levels of Location Errors
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Figure 2: Densities of VP - VN  for Different Levels of Location Errors
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Figure 3: Densities of (VP - VN)2  for Different Levels of Location Errors
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Figure 4: Densities of (VP - VN)2  for Different Levels of Location Errors
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