
An overview of the SAND Spatial Database System�

Claudio Esperança†

Gı́sli R. Hjaltason‡

Hanan Samet
Frantisek Brabec
Egemen Tanin

Computer Science Department
Center for Automation Research

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742

December 22, 2001

Abstract

An overview is given of the SAND spatial database system, an environment for developing applica-
tions involving both spatial and non-spatial data. The SAND kernel implements a relational data model
extended with several geometric functions and predicates as well as a spatial index. The main interface
to SAND is through an embedded interpreted language. This permits the rapid prototyping of algorithms
and makes SAND a useful tool both for applications and research. A graphical user interface that allows
for easy database querying, and a client/server approach that simplifies remote access are also outlined.

�This work was supported in part by the National ScienceFoundation under Grants EIA-99-00268, IIS-00-86162, EIA-00-91474,
and IRI-97-12715.

†Author’s current address: COPPE, Programa de Engenhariade Sistemas e Computação, UniversidadeFederal do Rio de Janeiro,
Ilha do Fundão, CT, Bloco H, Rio de Janeiro, RJ 21949-900, Brazil.

‡Current address: RightOrder, Inc., 3850 N. First Street, San Jose, CA 95134.



1 Introduction

The dramatic rise in the use of the Internet and the worldwide web has led to a re-examination of traditional
ways of looking at data. In particular, we increasingly find the need for applications to be location-aware.
This means the incorporation of spatial data such as that found in maps. The first revolutionary step was
the development of geographic information systems (GIS). In fact, one of the principal motivations for the
development of GIS is to lessen the time necessary to produce a map. Maps have traditionally been formed
as a result of a sequence of physical overlay operations and thus a reduction in the time necessary to perform
such a task has always been viewed as desirable. Computerizing this physical process was viewed as such
an improvement in speed that users were not overly concerned with making the computer execution time
optimal. In particular, taking several hours to compute a result was considered acceptable in light of the
time needed to tabulate the query manually and generate the output. Unfortunately, users today have been
conditioned to get results quickly and do not want to spend much time waiting for them. In other words,
they are willing to accept a result that is not 100% accurate and without so much detail provided that they
can obtain it sufficiently quickly and with enough detail to make an intelligent decision (see [16] for a similar
conclusion in a database environment).

1.1 Direct Manipulation

One of the principal reasons for this change of thinking is the familiarity of GIS users with spreadsheets. The
invention of the spreadsheet is generally accepted as the most important factor in demonstrating the utility
of the computer to the average user. It enabled her to answer questions such as “what if ...” without large
commitments of time and money. One of the powers of the spreadsheet lies in its ability to make a database
come alive in a visual sense. Moreover, the method of interaction with the spreadsheet is usually via direct
manipulation (e.g., [29]) in the sense that users do not need to know how to write computer programs to get
the output they desire. Instead, all operations are in terms of the basic entities and actions of the spreadsheet
(i.e., the rows, columns, and drag-drop actions). Thus the spreadsheet enables users to have a very powerful
decision support tool that responds to their requests instantly. They do not have to go to the printer to get the
output to their queries. The output is in a format that facilitates subsequent queries.

Armed with their experiences with spreadsheets, it is not unreasonable for users to expect the same capa-
bility from their other decision making tools. Unfortunately, this is not so easy. For example, in the context
of a GIS whose output is a paper map, once we have generated the paper map, we cannot simply annotate it
with changes and pose subsequent queries on the modified map. Of course, we could save the output digitally
and work directly on the screen. The limited resolution of the screen can be compensated by having a zoom
capability (e.g., [5, 6, 21, 28]). Nevertheless, the fact that the output has the resolution usually expected for
a paper map meant that the operations also took quite a long time to execute. This is especially troublesome
when users do not necessarily require such resolution.

An additional problem for users is that frequently the type of queries that they wish to pose are a combi-
nation of spatial and nonspatial data. Spatial data is usually stored in a GIS (e.g., ArcInfo from ESRI) while
nonspatial data is stored in a conventional database management system (DBMS) [14, 31, 33]. The drawback
of most GIS is that they are usually very good for location-based queries such as “what feature is at location
x?” However, they are not so good for feature-based queries such as “where is feature y?” [3]. Such queries
are usually best handled by a conventional DBMS. Users want to answer both of these types of queries with
equal ease. They do not want to know how the GIS or the nonspatial database are organized.

Handling such queries requires a seamless integration of spatial and nonspatial data [14, 31, 33]. The idea
is to interact with a spatial database (GIS) in the same manner as we would interact with a nonspatial DBMS.
Moreover, spatial operations should be executed using conventional database primitives. One problem with
conventional DBMSs is that they are usually accessed via the aid of SQL (Structured Query Language) which

1



is rather cumbersome when it comes to nonstandard data such as maps and images [10], although there have
been a number of attempts to adapt SQL to the spatial domain (e.g., [11, 13, 25]). Nevertheless, a graphical
user interface is more appropriate as it enables users to query the underlying database without having to worry
about whether or not a corresponding SQL extension has been defined already.

Conventional spreadsheets get their name from the fact that all the data is spread out in a tabular format
and operations are specified in terms of combinations of rows and columns. An analogous problem-solving
paradigm in a GIS is the overlay concept (e.g., [12, 32]). In this case, operations are specified as compositions
of maps with the output of one or more operations serving as input to other operations. Frequently, in a GIS
there is no need for the operation to run to completion to obtain the desired results. Often, we would like to
proceed in a pipelined fashion where the first results of an operation are fed as inputs to subsequentoperations.
We characterize such a solution as being incremental. We use the term browsing (browser) to describe the
physical process (processor) of (for) obtaining an answer incrementally.

1.2 Example

As an example of one of the composition queries that we wish to handle, consider “finding the closest county
(in terms of distances in the plane) to Cook County (i.e., Chicago) with a bladder cancer mortality rate for
white males greater than 7.5 per 100,000 people in the period 1970–1994 and a population greater than 1
million”. What makes this query difficult is the presence of the spatial condition involving distances between
two-dimensional regions. Conventional DBMSs facilitate retrieval on the basis of a particular attribute by
building an index for it (i.e., sorting it). In the case of one-dimensional data like the mortality rate per 100,000
people and the population, this is quite simple as we have a zero reference point with which to sort the data.
For example, assuming the existence of an index on the bladder cancer mortality rate per 100,000 people in
the period 1970–1994, to find all counties in the order of the closeness of their mortality rate per 100,000
people to that of Cook County for which it is 8.5, we look up the value 8.5 in the index and then proceed in
two directions along the index on the population attribute to obtain the nearest counties by mortality rate per
100,000 people in constant time. We do not have to rebuild the index if we want to be able to answer the
next query which deals with the mortality rate per 100,000 people in Los Angeles county whose population
is about 8 million.

Unfortunately, this strategy cannot be used when dealing with distances in the two-dimensional plane.
For example, to find the county closest to Cook County, we could sort the counties according to their distances
from Cook County. However, to find the closest county to Los Angeles County, the list of sorted distances
from Cook County is not useful to us due to the non-additivity of distances in domains whose dimensionality
is greater than one. In other words, the distance from Cook County to Los Angeles County is not equal to the
sum of the distance from Los Angeles County to St. Louis County and the distance from St. Louis County to
Cook County. Thus we need to be careful in the manner in which we represent the locations of the counties.
In particular, we need to use an implicit spatial index that is based on spatial occupancy (e.g., a quadtree, R-
tree, etc. [26, 27]) rather than an explicit spatial index that is based on distances from a particular reference
point.

The query that we have just described is an instance of a process that we term ranking. Ranking is a
byproduct of sorting. However, often, we are only interested in the first few values (e.g., the three closest
counties to Cook County), in which case sorting the entire set of counties by distance from Cook County is
an overkill. Moreover, as we saw, if we want the nearest three counties to Los Angeles County, then we must
reinvoke the sort. Thus the most frequent solution is to calculate the k nearest counties to Cook County. The
problem with this approach is that if we want the k+ 1st (e.g., the fourth) nearest county to Cook County,
then we have to restart the computation and compute the k+ 1 (i.e., 4) nearest neighbors. Therefore, it is
preferable to compute the nearest neighbors in an incremental fashion so that we need not compute more
neighbors than are necessary. This is especially useful when we want to respond to queries such as finding

2



the nearest county to Cook County with a bladder cancer mortality rate for white males in the period 1970–
1994 greater than 7.5 per 100,000 people and a population greater than 1 million since the nearest one may
not satisfy the mortality rate and population conditions thereby necessitating finding the next nearest, etc.

1.3 Our System

SAND (denoting Spatial And Nonspatial Data) is a prototype spatial database system/GIS developed at the
University of Maryland that has many of the above features. In particular, the SAND system contains a
browser called the SAND Browser that enables the visual definition and execution of these queries. We are
using the SAND system in digital government applications such as FedStats and the National Atlas of Cancer
Mortality. The intended purpose of the SAND system is to be a research vehicle for work in spatial indexing,
spatial algorithms, interactive spatial query interfaces, etc. The basic notion of SAND is to extend the tradi-
tional relational database paradigm by allowing table attributes to be spatial objects (e.g., line segments or
polygons), and by allowing spatial indexes (such as quadtrees) to be built on such attributes, just as traditional
indexes (like B-trees) are built on nonspatial attributes.

The rest of this paper is organized as follows. Section 2 describes the basic structure of the SAND system
(i.e., the SAND kernel and the SAND interpreter), and which has recently been extended to function within
a client/server environment. Section 3 presents the SAND Browser and the SAND Internet Browser, which
provide a graphical user interface to the query facilities of the SAND system, as well as examples of their
use in the context of digital government applications. Concluding remarks are drawn in Section 4 in addition
to suggestions for future work.

2 SAND

SAND is divided into two main layers, the SAND kernel, and the SAND interpreter (see Figure 4). The
SAND kernel was built in an object oriented fashion (using C++) and comprises a collection of classes (i.e.,
object types) and class hierarchies that encapsulate the various components. SAND adopts a data model in-
spired by the relational model. Thus, its core functionality is defined by the different types of tables and
attributes it supports, and the class hierarchies that encapsulate this functionality are among the most im-
portant. Both of these aspects of the SAND kernel are defined in an extensible manner, so that new table
and attribute types can readily be added to the system. The SAND interpreter provides a low-level proce-
dural query interface to the functionality defined by the SAND kernel. Using the query interface provided
by the SAND interpreter, we have built a number of useful tools. In addition to the interactive spatial query
browsers described in Section 3, we have built a prototype for a high-level declarative query interface to
SAND, modeled on SQL, and a prototype image database system [30].

The SAND kernel has many of the characteristics of full-featured relational database systems. For exam-
ple, it has a block-based storage manager that caches blocks associated with the various tables (i.e., relations
and indexes) in the system, with an LRU replacement policy. Furthermore, tuples (also termed rows and
records) are laid out in blocks such that a block may contain multiple tuples, while large tuples may span
multiple blocks. Nevertheless, due to main emphasis of our research, SAND does not currently support fea-
tures such as transaction and concurrency support, or query planning and optimization.

2.1 Table Types

The table abstraction in SAND encapsulates what in conventional databases are known as relations and in-
dexes. Tables are handled in much the same way as regular disk files, i.e., they have to be opened so that
input and output to disk storage can take place. All open tables in SAND respond to a minimal common
set of operators, such as first, next, insert, and delete. SAND currently defines three table types: relations,

3



linear indexes, and spatial indexes. Each table type supports an additional set of operators, specific to its
functionality. The function of many of these operators is to alter the order in which tuples are retrieved, i.e.,
the behavior of first and next.

Table

tid
delete
insert
next
first

Index
Linear Spatial

Index
Relation goto

find

range
within
ranking
join

intersect

PMR
Quadtree

PK-tree
zkd
B-tree

R*-tree

Figure 1: The class hierarchy of tables supported by SAND (the arrows denote class deriva-

tion).

Relations in SAND are tables that support direct access by tuple identifier (tid, which are composed of a
block number and a tuple number). Ordinarily, tuples are retrieved in order of increasing tid, but the operation
goto tid can be used to jump to the tuple associated with the given tid (if it exists). For access by attribute
values, indexes can be defined on attributes or groups of attributes of relations.

Linear indexes for non-spatial attributes are implemented using B-trees [8]. Tuples in a linear index are
always scanned in an order determined by a linear ordering relation. Linear indexes support the find operator,
that locates the first tuple in the index that is greater than or equal to the argument, and the range operator,
that is used to perform range search.

Indexes can also be defined on spatial attributes in SAND. The SAND kernel defines an extensible frame-
work for spatial indexes that makes it straight-forward to plug an already-implemented spatial access method
into the system. Currently, the system supports indexing with the PMR quadtree [22], PK tree [34], zkd B-
tree [23], and R�-tree [4, 15]. Spatial attribute values indexed by a spatial index may be represented in up
to three ways (at least one of which must be supported by a given spatial index type): 1) inline, where the
spatial attribute value is stored inside the spatial index, 2) object table, where a separate table is created to
store copies of the attribute values, and 3) from relation, where the attribute values are accessed directly from
the tuples of the indexed relation. The advantage of inline is that during search, all the information is present
in the index, but it has the drawback that it makes the index larger. The advantage of object table over from
relation is that the relation may contain many attributes, all of which would be accessed if the spatial attribute
value of a tuple is needed during search. Moreover, the object table approach allows clustering the spatial at-
tribute values in a way that optimizes I/Os (see [7]), without affecting the relation itself. Nevertheless, it has
the drawback that the spatial attribute values are stored in two places, in the relation itself and in the object
table.

A number of standard search operators are defined for spatial indexes, some or all of which may be im-
plemented by a particular index type. These include intersect, for searching tuples that intersect a given
feature; within, for retrieving tuples in the proximity of a given feature; and ranking [17, 19], for retriev-
ing tuples in order of distance from a given feature (ranking is closely related to nearest neighbor queries).
Furthermore, the join operator can be applied on two spatial indexes, where the join is either by intersection
(i.e., a traditional spatial join) or by distance (termed distance join [18]).

4



1 2 2S 3 N
char point spoint point3d point(N)
char(N) line sline line3d box(N)
string rectangle lrectangle box3d
integer polygon spolygon triangle3d
float region triangleStrip3d
boolean icon
array image

Figure 2: Attribute types de�ned for each dimension class.

2.2 Attribute Types

SAND implements attributes of common non-spatial types (integer and floating point numbers, fixed-length
and variable-length strings, etc.) as well as various kinds of spatial types. Attribute types have an associated
dimension class, that group together “compatible” attribute types, and attribute values have an associated
dimensionality. The dimension classes currently defined in the system are labeled “1”, “2”, “2S”, “3”, and
“N”, where the numeric labels correspond with the dimensionality, “2S” denotes two-dimensional spherical
geometry [2], and “N” denotes arbitrary dimensionality (i.e., the attribute types of that class support spatial
objects of any fixed dimensionality). Thus, non-spatial attribute types are all in the class labeled “1”, while
each spatial attribute type is in one of the other classes. All the spatial classes (i.e., classes other than “1”)
contain at least an attribute type for points and another one for axis-aligned hyper-rectangles. The attribute
types currently defined in each class are listed in Figure 2.

All attribute types support a common set of operations to convert their values to and from text, to copy
values between attributes of compatible types, as well as to compare values for equality. Non-spatial at-
tribute types also support the compare operator, which is used to establish a linear ordering between values
of the same type. This is required so that non-spatial attributes can be used as keys in linear indexes. Spa-
tial attribute types support a variety of geometric operations, including intersect, which tests whether two
features intersect, distance, which returns the Euclidean distance between two features (used for the rank-
ing operator), and bbox, which returns the smallest axis-aligned rectangle that contains a given feature (i.e.,
its minimum bounding rectangle). Some spatial types support additional operations. For instance, the re-
gion type supports operations like expand, which can be used to perform morphological operations such as
contraction and expansion, and transform, which can be used in the computation of set-theoretic operations.

The attribute types listed in Figure 2 may be thought of as comprising a class hierarchy, with the base
class “Attribute”, and a derived base class for each dimension class, as partially depicted in Figure reffig-
sandattr. However, for performance reasons and for increased flexibility, instead of relying on the object-
oriented features of C++, we opted to develop our own attribute type manager that provides an extensible
mechanism for attribute types and functions on them. The type manager maintains a registry of types, each
of which has an associated string identifier (as listed in Figure 2) and a unique numeric identifier that is used
internally. Furthermore, the type manager coordinates the creation and release of spatial objects, and the
invocation of the common set of operations mentioned above. The type manager also maintains a function
registry, where each function is also identified by a string, and may take an arbitrary number of arguments
(each of which may be for a fixed attribute type or for an arbitrary one) and have a return value of several
different types. The function registry is used for the spatial operations mentioned above, intersect, distance,
and bbox, that are defined for all spatial attribute types, as well as for specialized operations that have been
added as needs arose (e.g., area for computing the area of two-dimensionalpolygons). With the type manager
it is easy to add new types and functions on them to the system, and the set of types and functions in the system
is continually growing.

5



components

format

coarsen

distance

loadAttribute

equal
assign

binformat

draw
bbox

intersect

transform
expandregion

polygon

point line

rectanglechar(n) string

floatinteger

Non-spatial compare Spatial

scan

Figure 3: Some of the attributes types implemented in SAND and some of the operations
de�ned on them.

2.3 The SAND/Tcl Interface

The SAND kernel provides the basic functionality needed for storing and processing spatial and non-spatial
data. In order to access the functionality of this kernel in a flexible way, we opted to provide an interface to
it by means of an interpreted scripting language, Tcl [24]. Tcl offers the benefits of an interpreted language
but still allows code written in a high-level compiled language (in our case, C++) to be incorporated via a
very simple interface mechanism. Another advantage offered by Tcl is that it provides a seamless interface
with Tk [24], a toolkit for developing graphical user interfaces.

The SAND interpreter provides commands that mirror all kernel operations mentioned in the previous
sections. In some cases, a single command may cause more than one kernel operation to be performed. In
addition, the interpreter implements data definition facilities. The processing of spatial queries is supported
by interpreter commands that operate on spatial attributes and spatial indexes. While some of the commands
available in the SAND interpreter are for accessing SAND kernel functionality, most are defined by the un-
derlying Tcl interpreter and the Tk toolkit. In addition, we developed a Tk “widget” for displaying two-
dimensional maps, used by the SAND Browser (see Section 3.1), that efficiently handles large data sets and
provides zooming and panning facilities. Furthermore, system can be extended through Tcl’s scripting ca-
pability by writing new methods or query strategies, which are either a standard addition or added by an
application developer. In fact, the interpreter can be viewed as the unifying element of the whole SAND
system (see Figure 4, which is a block diagram of the SAND system).

2.4 Client/Server Architecture

The SAND interpreter application (i.e., the executable) includes the SAND kernel codebase, since the inter-
preter directly accesses functionality of the kernel. Thus, any application built on top of the interpreter, such
as the SAND Browser (see Section 3.1), runs in the same process as the SAND kernel, and displays maps on

6



Library

SAND

SAND Interpreter

Kernel

SAND 
Toolkit

Tk

. . .

. . . User

Data Files

Applications

SAND

Server

. . .

Client Applications

Figure 4: A block diagram of the SAND system.

the same computer1. Although for many uses, this is an adequate solution, the proliferation of the Internet
makes it increasingly attractive to provide database access over a wide area network. To address this need,
many web-based spatial data providers have adopted the approach of delivering maps as images, created by
a database server (e.g., www.MapQuest.com and www.MapsOnUs.com). This an appropriate solution for
many applications, and requires minimal resources for both hardware and software on the client side. Nev-
ertheless, the resulting product has severe limitations in terms of available functionality and response time,
and the transferred images do not have the same flexibility and representational power as the spatial data
itself.

Based on the above considerations, we chose to adopt a client/server model where the actual data values
(including those of the spatial data types) are transferred between the client and the server, and the client can
issue queries to the server. One option would be to expose the full SAND/Tcl interface to the client, but this
approach would invite a host of potential security risks. Thus, we designed a protocol that provides a more
restricted access to the functionality of the SAND interpreter. The server itself is written in the SAND/Tcl
script language, while we have developed a graphical client, written in Java, with functionality that resembles
the SAND Browser (see Section 3.2). In an earlier effort, we also developed an OpenMap server interface
for SAND, in cooperation with USGS [9].

3 Interactive Query Interfaces

In this section, we describe two ways of interacting with the SAND system in a graphical manner (Sec-
tions 3.1 and 3.2), and present examples of their use (Section 3.3).

3.1 SAND Browser

The SAND Browser provides a graphical user interface to the facilities of SAND. It permits the visualization
of the data contained in a SAND relation by specifying two types of controls: the scan order in which tuples
are to be retrieved, and an arbitrary selection predicate. The tuples satisfying the query are obtained in an
incremental order. Users rarely need to wait too long to get visual feedback provoked by an action.

1Strictly speaking, this is not true for systems that support the X windowing system. Nevertheless, relying on X is not a viable
solution for delivering maps over the Internet.

7



The class of queries currently implemented in the SAND Browser is restricted to selections and spatial
joins (e.g., distance joins and distance semijoins [18]). The user specifies queries by choosing the desired
selection conditions from a variety of menus and dialog boxes. Spatial values can either be drawn on the
appropriate display pane or typed in by filling forms. Query results can either be displayed interactively using
the First and Next buttons or saved in relations for use in subsequent SAND queries in a manner somewhat
analogous to a spreadsheet.

3.2 SAND Internet Browser

As mentioned in Section 2.4, the SAND Browser is not suitable for interactive map delivery over the Inter-
net. In a more recent effort, we have developed another graphical query interface for SAND, that functions
as a client to the server interface described in Section 2.4. This client interface, termed the SAND Internet
Browser, is built using the popular Java technology, and is a relatively simple and lightweight application.
Using Java provides platform independence while reducing installation and maintenance efforts. Like the
SAND Browser, the SAND Internet Browser is more than a naive image viewer, but instead operates on vec-
tor data and allows the client to perform many operations such as zoom in/out or locational queries without
communicating with the server. In essence, the client keeps a local cache of a portion of the whole database,
which is only updated when additional or newer data is needed.

We see two different types of usages for our Java-based browser. First, the browser can be activated as
an applet so that users across various platforms can access a spatial database on a remote machine without
having to install the SAND system on their side. Second, the browser along with the SAND kernel can be
installed on the client side. In the latter case, the browser can be utilized to view data from remote data
sources, while frequently used data can be loaded to the local SAND database on demand, and subsequently
accessed locally. In time, users can build up their own local databases and make it available over the network.

3.3 Sample Queries

Figure 5 is a screenshot of what a user interaction with the SAND Internet Browser might look like. It shows
the relation corresponding to mortality rates per 100,000 for bladder cancer for white males for the time pe-
riod 1970–1994. We have also overlaid it with the result of a clustering-like operation that is available in
SAND. In particular, we have shown a partition of the underlying space with respect to the 17 counties with
the highest mortality rates so that each county in each partition is closer to the county with the high rate in
the same partition than to any other county with a high rate. The green dots indicate locations of high chlo-
rine emissions obtained from the FedStats [1] website. The goal is to see if there is some spatial correlation
between counties with a high incidence of bladder cancer and large chlorine emissions. As can be seen, lo-
cations with a large amount of chlorine emissions are not clustered around these counties. Thus these two
events do not seem to be spatially correlated.

The scenario depicted in Figure 5 is analogous to a discrete Voronoi diagram and is a form of clustering.
This clustering operation is available in both the SAND Browser and the SAND Internet Browser and can
be achieved by executing an incremental distance semi-join [18] operation where the input relation corre-
sponding to the high chlorine emissions map is joined with the high incidence of bladder cancer map and the
join condition is based on proximity with the closest tuple pairs from the two sets being retained. Once the
closest emissions-cancer pair (a;b) has been found, the next closest pair is found from the set of emissions
tuples which excludes tuple a from participating. This process is continued until the closest high incidence
of bladder cancer county has been found for each of the high chlorine emissions locations.

Figure 6 illustrates another sample query. In this query, nuclear facilities around a certain monitoring
station along the northeastern U.S. and the Canadian border (Figure 6a) are computed in the order of their
distance to this station. First, we define our query by selecting the location of the station and then the ranking

8



Figure 5: Sample screenshot of a possible user interaction with the SAND Internet Browser.

The relation being displayed corresponds to classes of mortality rates per 100,000 for bladder
cancer for white males for the time period 1970{1994. It is also overlaid with the result of a
partition of the underlying space with respect to the 17 counties with the highest mortality

rates so that each county in each partition is closer to the county with the high rate in the
same partition than to any other county with a high rate. The green dots indicate locations

of high chlorine emissions.

9



operation starts by displaying our first hit (Figures 6b and 6c). By clicking the “Next” button we can con-
tinue this operation as long as we want (Figure 6d). Again, if desired, the nuclear facilities relation can be
partitioned with respect to the monitoring stations relation with a discrete Voronoi diagram (Figure 7).

(a) (b)

(c) (d)

Figure 6: The nuclear facilities around a certain monitoring station along the northeastern
U.S. and the Canadian border are computed. The green dots indicate nuclear facilities, the red

dots indicate monitoring stations, and the blue dots indicate hits to our query. (a) Displays the
two relations, monitoring stations and nuclear facilities; (b) the location of a certain station

is chosen for a ranking query by distance; (c) the closest facility is displayed; (d) the query
continues with other hits, incrementally.

10



Figure 7: The discrete Voronoi diagram, partitioning the nuclear facilities relation with respect
to the monitoring stations relation, is depicted.

4 Concluding Remarks

SAND is an on-going project. At present, we are focusing on the client/server environment for which our
efforts are in two directions. The first is on developing efficient caching methods that would balance lim-
ited client resources on one side and significant latency of the client/server link on the other while the low
bandwidth of this link would be a concern in both cases. The second is to help users that want to manipulate
data for prolonged periods of time by developing a peer-to-peer approach to provide them with the ability to
download fairly large amounts of data more efficiently by better utilizing the distributed network bandwidth.
In addition, we want to use the same mechanism to help them upload the results of their work to a remote
server if needed.

The classic client/server approach for transferring data between the two ends of a connection assumes a
designated role for each of the ends (i.e., a client + a server). It also ignores the fact that the needs of the two
ends may be time dependent (i.e., congested periods of usage for the server). A pure peer-to-peer approach
where the two ends/peers can assume both the roles of a client and a server from time to time may improve
the overall network performance by resolving the congested situations. At a given time the server may be
busy serving other requests (forming a congestion). The common solution to this problem in the realm of
databases is to cache or forward results/requests. The novelty of the peer-to-peer approach is converting the
static configuration of forwarding requests to a highly dynamic one where a persistent storage is formed from
a pool of clients and servers (peers). A request to download/upload data can be performed by a set of selected
peers from this pool at a given time that optimizes the network performance. Keeping alive and fresh copies
of the data (and hence a directory of active peers) forms a challenging research problem in this area. Hybrid
configurations where a main server (e.g., a government/company operated server) exists are also possible.

Other work includes adding a map browsing capability to FedStats using the SAND Browser. This work
also involves the construction of a utility that would convert Federal government statistical data in EXCEL
format to be compatible with the SAND Browser. In addition, work is ongoing to further develop the concept
of a spatial spreadsheet [20] using the SAND Browser. It is interesting to note that SAND has already been
used for a prototype image database system [30].

11



References

[1] Fedstats: The gateway to statistics from over 100 U.S. federal agencies. http://www.fedstats.

gov/, 2001.

[2] H. Alborzi and H. Samet. Augmenting SAND with a spherical data model. In International Conference
on Discrete Global Grids, Santa Barbara, CA, March 2000.

[3] W. G. Aref and H. Samet. Efficient processing of window queries in the pyramid data structure. In Pro-
ceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 265–272, Nashville, TN, April 1990. Also Proceedings of the Fifth Brazilian Sympo-
sium on Databases, pages 15–26, Rio de Janeiro, Brazil, April 1990.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: an efficient and robust access
method for points and rectangles. In Proceedings of the ACM SIGMOD Conference, pages 322–331,
Atlantic City, NJ, June 1990.

[5] B. B. Bederson and J. D. Hollan. Pad++: a zooming graphical interface for exploring alternate interface
physics. Journal of Visual Languages and Computing, 7(1):3–31, March 1996.

[6] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and magic lenses: the see-
through interface. In Proceedings of the SIGGRAPH’93 Conference, pages 73–80, Anaheim, CA, Au-
gust 1993.

[7] T. Brinkhoff and H.-P. Kriegel. The impact of global clustering on spatial database systems. In Pro-
ceedings of the 20th International Conference on Very Large Data Bases (VLDB), J. Bocca, M. Jarke,
and C. Zaniolo, eds., pages 168–179, Santiago, Chile, September 1994.

[8] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, June 1979.

[9] C. B. Cranston, F. Brabec, G. R. Hjaltason, D. Nebert, and H. Samet. Adding an interoperable server
interface to a spatial database: Implementation experiences with OpenMapTM. In Interoperating Geo-
graphic InformationSystems — Second InternationalConference, INTEROP’99, A. Včkovski, K. Bras-
sel, and H.-J. Schek, eds., pages 115–128, Zurich, Switzerland, March 1999. Also Springer-Verlag
Lecture Notes in Computer Science 1580.

[10] M. J. Egenhofer. Why not SQL! International Journal of Geographical Information Systems, 6(2):71–
85, March-April 1992.

[11] M. J. Egenhofer. Spatial sql: A query and presentation language. IEEE Transactions on Knowledge
and Data Engineering, 6(1):86–95, February 1994.

[12] M. J. Egenhofer and J. R. Richards. Exploratory access to geographic data based on the map-overlay
metaphor. Journal of Visual Languages and Computing, 4(2):105–125, June 1993.

[13] S. Gadia and V. Chopra. A relational model and SQL-like query language for spatial databases. In
Advanced Database Systems, N. R. Adam and B. K. Bhargava, eds., Lecture Notes in Computer Science
759, pages 213–225. Springer-Verlag, Berlin, Germany, 1993.

[14] R. H. Güting. An introduction to spatial database systems. VLDB Journal, 3(4):401–444, October
1994.

[15] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the ACM
SIGMOD Conference, pages 47–57, Boston, June 1984.

12



[16] J. M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation. In Proceedings of the ACM SIGMOD
Conference, J. Peckham, ed., pages 171–182, Tucson, AZ, May 1997.

[17] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Advances in Spatial Databases — Fourth
International Symposium, SSD’95, M. J. Egenhofer and J. R. Herring, eds., pages 83–95, Portland, ME,
August 1995. Also Springer-Verlag Lecture Notes in Computer Science 951.

[18] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In Proceed-
ings of the ACM SIGMOD Conference, L. Hass and A. Tiwary, eds., pages 237–248, Seattle, WA, Jun
1998.

[19] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on Database
Systems, 24(2):265–318, June 1999. Also University of Maryland Computer Science TR-3919.

[20] G. Iwerks and H. Samet. The spatial spreadsheet. In Proceedings of the Third International Conference
on Visual Information Systems (VISUAL99), D. P. Huijsmans and A. W. M. Smeulders, eds., pages 317–
324, Amsterdam, The Netherlands, June 1999.

[21] H. Lieberman. Powers of ten thousand: navigating in large information spaces. In Proceedings of
the ACM Symposium on User Interface Software and Technology, pages 15–16, Marina del Rey, CA,
November 1994.

[22] R. C. Nelson and H. Samet. A consistent hierarchical representation for vector data. Computer Graph-
ics, 20(4):197–206, August 1986. Also Proceedings of the SIGGRAPH’86 Conference, Dallas, August
1986.

[23] J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In Proceedings
of the Third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS),
pages 181–190, Waterloo, Ontario, Canada, April 1984.

[24] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.

[25] N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial database system for PSQL. IEEE
Transactions on Software Engineering, 14(5):639–650, May 1988.

[26] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[27] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.

[28] M. Sarkar and M. H. Brown. Graphical fisheye view of graphs. Communications of the ACM,
37(12):73–84, December 1994.

[29] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction .
Addison Wesley, Reading, MA, third edition, 1997.

[30] A. Soffer and H. Samet. Two approaches for integrating symbolic images into a multimedia database
systems: a comparative study. VLDB Journal, 7(4):253–274, December 1998.

[31] M. Stonebraker. Limitations of spatial simulators for relational DBMSs. Technical report,
INFORMIX Software, Inc., 1997. http://www.informix.com/informix/corpinfo/zines/

whitpprs/wpsplsim.pdf.

[32] C. D. Tomlin. Geographic information systems and cartographic modelling. Prentice Hall, Englewood
Cliffs, NJ, 1990.

13



[33] T. Vijlbrief and P. van Oosterom. The GEO++ system: an extensible GIS. In Proceedings of the Fifth
International Symposium on Spatial Data Handling, pages 40–50, Charleston, SC, August 1992.

[34] W. Wang, J. Yang, and R. Muntz. PK-tree: a spatial index structure for high dimensional point data.
In Proceedings of the Fifth International Conference on Foundations of Data Organization and Algo-
rithms (FODO), K. Tanaka and S. Ghandeharizadeh, eds., pages 27–36, Kobe, Japan, November 1998.

14


