
ChoroWare: A Software Toolkit for Choropleth Map Classifications

Ningchuan Xiao, Marc P. Armstrong and David A. Bennett

Department of Geography
The University of Iowa
Iowa City, IA 52242
E-mail: {ningchuan-xiao; marc-armstrong; david-bennett}@uiowa.edu

When exploratory spatial data analyses are conducted, choropleth mapping is an important means
to display 1) the patterns of the spatial observations for enumeration areas, such as counties or
Census Tracts, and 2) the resulting spatial statistical outcomes. Choropleth maps group spatial
observations into classes and each class is then assigned a particular color that is used to shade the
enumeration areas. The classifications can be performed in a large number of ways, with each
method focusing on a specific criterion, such as within-class similarity (Jenks and Caspall 1971),
geographical structure (Monmonier 1972; Murray and Shyy 2000), and statistical characteristics
(e.g., quantiles) (Slocum 1999: 67).

It is unlikely, however, that a particular classification will satisfy all criteria. In practice, a
classification that is optimal for one criterion may turn out to be poor from other perspectives.
Therefore, an appropriate design goal for a choropleth map is to consider classification as a
multicriteria (or multiobjective) problem. That is, instead of looking for a single classification that
is best for all criteria, it is more useful for cartographers to examine the classifications along a
Pareto-like front where no classification can be considered to be better than, or dominate, others.

The purpose of this paper is to describe the design and implementation of a software toolkit, called
ChoroWare, that can be used to help cartographers find a set of class intervals that is suitable for a
specific application. Using ChoroWare, users can explore a variety of alternative classifications and
select one that they deem most suitable. To achieve this goal, two critical tasks must be carried out.
First, ChoroWare must be able to generate the set of nondominated alternatives that forms the
Pareto front. Then, a visualization tool must be designed to allow users to interactively display the
trade-offs between criteria and the resulting choropleth map for each non-dominated alternative.
The overall architecture of ChoroWare is illustrated in Figure 1. The functionality of each module
is discussed below.

Figure 1. Overall structure of ChoroWare.

ChoroData MoGA/Choro ChoroFront ChoroVisual

ChoroWare

Generating nondominated alternatives is difficult for many multicriteria problems (Cohen 1978).
Recent developments, however, have shown that genetic algorithms (GAs) are able to generate
alternatives for multicriteria problems (Zitzler et al. 2001; Xiao et al. 2002). In a GA, a population
of individual solutions (i.e., a classification for a choropleth map) is randomly initialized and then
manipulated by a set of iterative operations, including selection, recombination, and mutation. At
the end of each iteration, solutions are evaluated according to a set of objectives. To obtain a
diverse population of alternatives, which is critical for multicriteria problems, we extended the
original GA island model (see Cantú-Paz and Goldberg 2000) and designed a specialized island
model. In our approach, the entire population is divided into several sub-populations (“islands”)
and each subpopulation is processed using a local set of evolutionary operations. A mechanism,
called migration, is used to exchange individuals, at a certain rate and interval, among the islands.
Inside each sub-population, an individual (i.e., a specific classification scheme) is evaluated on a
(partial) set of objectives.

Based on this principle, we designed a module called MoGA/Choro (multiobjective GA for
choroplethic classification) using object-oriented techniques (Figure 2). In this context a population
contains several subpopulations, and each subpopulation has many individuals represented using
class genotype. A genotype has a full set of genetic operators and a member datum called
chromosome, which represents a classification scheme by encoding the break points of the classes
into a string of integers. A genotype also contains an aggregating object called models, which
contains the models used to calculate the objective values. We have developed four “built-in”
objectives: goodness of variance fit (Robinson et al. 1984: 363), equal area of classes, spatial
autocorrelation, and boundary accuracy index (Jenks and Caspall 1971); using this pattern of
objects (Figure 2), new objectives can be easily defined and incorporated into the source code of
the module. Users can specify which objectives are desired in the configuration file of
MoGA/Choro. The object models contains an aggregating object called parameters, which includes
the data needed in the calculations. These data are generated from the raw spatial data (in vector or
raster formats) by a module called ChoroData. Data generated by ChoroData include an array of all
observations (for vector), a two-dimensional array of observations (for raster), an array of non-
repeated observations (for both vector and raster), and an array of linked lists of neighbors for each
polygon in a vector data structure.

Figure 2. The design pattern of MoGA/Choro.

genotype
chromosome
selection()
crossover()
mutation()
fitness()

models

model_equal_area

model_jenks

model_autocorr

model_boundary_error

model_base

data_attr_unique

data_attr

data_neighbor_list

data_raster

parameters

subpopulation

population

geno_base

a

b

a contains many b’s

a

b

a contains one b

a

b

b is derived from a

Within MoGA/Choro, classifications are saved to a file. The nondominated alternatives are then
extracted by a module called ChoroFront, and the results are visualized using a module called
ChoroVisual. The ChoroVisual tool was developed using GTK+ and GDK (www.gtk.org). It
currently consists of six windows to display 1) a map, 2) the attributes of polygons, 3) a value path
(also know as parallel coordinate plot), 4) a legend editor (called a classifier, for manual
classification), 5) a list of all nondominated alternatives (the window at the upper-left corner
marked as “Front List”), and 6) a multivariate plot (Figure 3). In this last window, a user can
choose to display a plot formed by any two variables listed in the left panel. Among these variables,
the last four are the built-in objectives. Each classification alternative is displayed as a small white
square in the solution space drawing area, where a red square is used to indicate the current
classification being used to draw the map. The current classification is also highlighted in the front
list and in the value path (the red line). Linkages among the map, multivariate plot, and front list
enable a user to examine the alternatives on the fly. The purpose of the legend editor is to help
users further explore each selected alternative. In the classifier window, a user can examine the
histogram of the observations and the break point of the classification, adjust the classification, and
change the color of classes. In so doing, a user can start from an acceptable classification and then,
based on this classification, try to find a better one.

Figure 3. A screenshot of ChoroVisual.

In general, using ChoroWare, cartographers and spatial analysts can have more flexibility in
choosing a suitable classification scheme for choropleth maps than current GIS and cartographic
software can provide. It is developed using Open Source technology based on Linux. Future
developments will focus on integrating ChoroWare with other powerful visualization tools such as
GGobi (www.ggobi.org), and developing more modules to help users distinguish alternative
classifications.

References

Cantú-Paz, E., and D. E. Goldberg. 2000. Efficient parallel genetic algorithms: theory and practice.

Computer Methods in Applied Mechanics and Engineering 186:221-238.
Cohon, J. L. 1978. Multiobjective Programming and Planning. New York: Academic Press.
Jenks, G. F., and F. C. Caspall. 1971. Error on choroplethic maps: definition, measurement,

reduction. Annals of the Association of American Geographers 61 (2):217-244.
Monmonier, M. S. 1972. Contiguity-based class-interval selection: a method for simplifying

patterns on statistical maps. The Geographical Review 62 (2):203-228.
Murray, A. T., and T.-K. Shyy. 2000. Integrating attribute and space characteristics in choropleth

display and spatial data mining. International Journal of Geographical Information Science
14 (7):649-667.

Robinson, A.H., Sale, R.D., Morrison, J.L., and Muehrcke, P.C. 1984. Elements of Cartography.
5th ed. New York, NY: John Wiley & Sons.

Slocum, T. A. 1999. Thematic Cartography and Visualization. Upper Saddle River, NJ: Prentice
Hall.

Xiao, N., D. A. Bennett, and M. P. Armstrong. 2002. Using evolutionary algorithms to generate
alternatives for multiobjective site search problems. Environment and Planning A in press.

Zitzler, E., K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, eds. 2001. Evolutionary Multi-
Criterion Optimization: Proceedings of the First International Conference. Berlin:
Springer.

