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When exploratory spatial data analyses are conducted, choropleth mapping is an important means 
to display 1) the patterns of the spatial observations for enumeration areas, such as counties or 
Census Tracts, and 2) the resulting spatial statistical outcomes. Choropleth maps group spatial 
observations into classes and each class is then assigned a particular color that is used to shade the 
enumeration areas. The classifications can be performed in a large number of ways, with each 
method focusing on a specific criterion, such as within-class similarity (Jenks and Caspall 1971), 
geographical structure (Monmonier 1972; Murray and Shyy 2000), and statistical characteristics 
(e.g., quantiles) (Slocum 1999: 67).  
 
It is unlikely, however, that a particular classification will satisfy all criteria. In practice, a 
classification that is optimal for one criterion may turn out to be poor from other perspectives. 
Therefore, an appropriate design goal for a choropleth map is to consider classification as a 
multicriteria (or multiobjective) problem. That is, instead of looking for a single classification that 
is best for all criteria, it is more useful for cartographers to examine the classifications along a 
Pareto-like front where no classification can be considered to be better than, or dominate, others.  
 
The purpose of this paper is to describe the design and implementation of a software toolkit, called 
ChoroWare, that can be used to help cartographers find a set of class intervals that is suitable for a 
specific application. Using ChoroWare, users can explore a variety of alternative classifications and 
select one that they deem most suitable. To achieve this goal, two critical tasks must be carried out. 
First, ChoroWare must be able to generate the set of nondominated alternatives that forms the 
Pareto front. Then, a visualization tool must be designed to allow users to interactively display the 
trade-offs between criteria and the resulting choropleth map for each non-dominated alternative. 
The overall architecture of ChoroWare is illustrated in Figure 1. The functionality of each module 
is discussed below. 
 
 
 
 
 
 
 
 
 

Figure 1. Overall structure of ChoroWare. 
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Generating nondominated alternatives is difficult for many multicriteria problems (Cohen 1978). 
Recent developments, however, have shown that genetic algorithms (GAs) are able to generate 
alternatives for multicriteria problems (Zitzler et al. 2001; Xiao et al. 2002).  In a GA, a population 
of individual solutions (i.e., a classification for a choropleth map) is randomly initialized and then 
manipulated by a set of iterative operations, including selection, recombination, and mutation. At 
the end of each iteration, solutions are evaluated according to a set of objectives. To obtain a 
diverse population of alternatives, which is critical for multicriteria problems, we extended the 
original GA island model (see Cantú-Paz and Goldberg 2000) and designed a specialized island 
model. In our approach, the entire population is divided into several sub-populations (“islands”) 
and each subpopulation is processed using a local set of evolutionary operations. A mechanism, 
called migration, is used to exchange individuals, at a certain rate and interval, among the islands. 
Inside each sub-population, an individual (i.e., a specific classification scheme) is evaluated on a 
(partial) set of objectives.  
 
Based on this principle, we designed a module called MoGA/Choro (multiobjective GA for 
choroplethic classification) using object-oriented techniques (Figure 2). In this context a population 
contains several subpopulations, and each subpopulation has many individuals represented using 
class genotype. A genotype has a full set of genetic operators and a member datum called 
chromosome, which represents a classification scheme by encoding the break points of the classes 
into a string of integers. A genotype also contains an aggregating object called models, which 
contains the models used to calculate the objective values. We have developed four “built-in” 
objectives: goodness of variance fit (Robinson et al. 1984: 363), equal area of classes, spatial 
autocorrelation, and boundary accuracy index (Jenks and Caspall 1971); using this pattern of 
objects (Figure 2), new objectives can be easily defined and incorporated into the source code of 
the module. Users can specify which objectives are desired in the configuration file of 
MoGA/Choro. The object models contains an aggregating object called parameters, which includes 
the data needed in the calculations. These data are generated from the raw spatial data (in vector or 
raster formats) by a module called ChoroData. Data generated by ChoroData include an array of all 
observations (for vector), a two-dimensional array of observations (for raster), an array of non-
repeated observations (for both vector and raster), and an array of linked lists of neighbors for each 
polygon in a vector data structure.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The design pattern of MoGA/Choro. 
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Within MoGA/Choro, classifications are saved to a file. The nondominated alternatives are then 
extracted by a module called ChoroFront, and the results are visualized using a module called 
ChoroVisual. The ChoroVisual tool was developed using GTK+ and GDK (www.gtk.org). It 
currently consists of six windows to display 1) a map, 2) the attributes of polygons, 3) a value path 
(also know as parallel coordinate plot), 4) a legend editor (called a classifier, for manual 
classification), 5) a list of all nondominated alternatives (the window at the upper-left corner 
marked as “Front List”), and 6) a multivariate plot (Figure 3). In this last window, a user can 
choose to display a plot formed by any two variables listed in the left panel. Among these variables, 
the last four are the built-in objectives. Each classification alternative is displayed as a small white 
square in the solution space drawing area, where a red square is used to indicate the current 
classification being used to draw the map. The current classification is also highlighted in the front 
list and in the value path (the red line). Linkages among the map, multivariate plot, and front list 
enable a user to examine the alternatives on the fly. The purpose of the legend editor is to help 
users further explore each selected alternative. In the classifier window, a user can examine the 
histogram of the observations and the break point of the classification, adjust the classification, and 
change the color of classes. In so doing, a user can start from an acceptable classification and then, 
based on this classification, try to find a better one.  
 

 
 

Figure 3. A screenshot of ChoroVisual. 
 
In general, using ChoroWare, cartographers and spatial analysts can have more flexibility in 
choosing a suitable classification scheme for choropleth maps than current GIS and cartographic 
software can provide. It is developed using Open Source technology based on Linux. Future 
developments will focus on integrating ChoroWare with other powerful visualization tools such as 
GGobi (www.ggobi.org), and developing more modules to help users distinguish alternative 
classifications.  
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