

Ram M. Pendyala Dept of Civil and Environmental Engineering University of South Florida, Tampa

GPS Tracking and Time-Geography Applications for Activity Modeling and Microsimulation Santa Barbara, CA, October 10-11, 2005

NIVERSITY OF

Motivation for Time-Space Geography

- Derived nature of travel demand activities distributed in time and space
- > Action "space" governed by modal accessibility and "time" availability
- Representation of time-space continuum offers strong behavioral framework for modeling activitytravel patterns
 - Opportunities and constraints
 - Interactions/interdependencies among agents
- Key distinction between tour-based and activitybased microsimulation model systems

Time Use and Activity Perspectives

- Speed is finite and time is limited
- Individual's trajectory in time and space confined to Hägerstrand's prism
- Need to recognize spatio-temporal constraints on individual's movement
- Time use and activity-based approaches to modeling transport demand emerging

A Time-Space Prism

A simplified representation of time-space constraints

Role of Time-Space Geography

- Prism-Constrained Activity-Travel Simulator (PCATS)
 Comprehensive activity-based microsimulation model
- Time-space geography plays critical role in:
 - Defining destination choice set by mode availability
 - Defining activity type choice set by destination availability
 - Interdependency among trips with respect to destinations and schedules (timing)
 - Interdependency among individuals joint activity-travel engagement

Prism-Constrained Activity-Travel Simulator

- Define open and blocked periods for each individual
- > PCATS incorporates time-space constraints
 - Mode availability
 - Modal speed
 - ✤ Time available
 - Range of destinations
- Structure of PCATS

Sample Distributions: Origin Vertex – Morning Prism

Sample Distributions: Obs Travel Time vs Frontier Distributions

International Comparisons

Survey area	Commuters			Non-commuters		
	Expendi- ture (min)	Budget (min)	r	Expendi- ture (min)	Budget (min)	r
USA	94	165	.558	95	188	.501
Swiss	101	187	.556	115	250	.464
India	73	141	.521	51	84	.617

GPS Data and Time-Space Geography

- Accurate temporal and spatial attributes for all activities and trips
- Construct time-space paths of activity-travel participation on (actual) modal networks
- Automated geocoding of all activity/trip locations
- Multiday and multiweek data on time-space paths due to reduced survey burden

Explore variations and planning time horizons

Collecting GPS Data on Time-Space Paths

- Passive vs. active data collection protocol
 - What does the respondent need to provide?
- Secondary data collection
 - What needs to be collected and how?
- > Temporal resolution of data collection
- Sampling issues
 - * One person vs. All persons vs. One vehicle vs. All vehicles
 - Sample size: Is a smaller sample size sufficient because of greater accuracy and/or multiday data?
- > Understanding limitations of GPS data

Analyzing GPS-based Travel Data

- Management, synthesis, and visualization of data in GIS platforms
- Construction of time-space paths/prisms
- Linking/matching/merging secondary data * Land use, network, census, commercial databases
- Route choice behavior and network analysis (supply variables)
- Comparison of actual vs. "optimal" time-space path
 Develop/refine behavioral paradigm (not utility maximization)
 - Positive utility of travel?

Using GPS Data in Activity-Based Model Development

- Define/identify constraints and opportunities
 - ☆ Time-space constraints → Generate choice sets (activity type, destination, mode, time of day)
- Incorporate interactions and interdependencies
 - ↔ Household time-space paths → Interperson interactions (vehicle and task allocation, joint activity engagement)
 - ♦ Multiday time-space paths → Interday dependency (history dependency and future anticipation/planning)
- Inform model linkages and specification

Challenges and Opportunities

- Tools and resources for collection, analysis, synthesis, and visualization of time-space geography
- > Identify wider range of applications
 - ICT, mobility, accessibility, and social equity analysis
 - Network performance assessment (supply analysis) application to disaster planning
 - Built environment, travel behavior, and physical activity
 - Land use planning locate activity opportunities within time-space paths
 - Transportation security and safety applications (locations of people and vehicles by time of day)

Challenges and Opportunities (continued)

- > Identify wider range of applications (continued)

 - Comprehensive microsimulation of land use travel demand – traffic (network) continuum

