

Thomas Berger, Stefanie Kirchhoff, Soojin Park, Johannes Woelcke Center for Development Research, Bonn University, Walter-Flex-Str. 3, 53113 Bonn, Germany

Multiple-Agent Modeling Applied to Agro-Ecological Development

Overview of Research Activities at ZEF - Bonn University

Agent-based Spatial Model Class

- Balmann's Farm Cellular Automata
- + Behavioral heterogeneity
- + Interaction, communication
- + Integration of natural resources
- + Empirical parameterization and validation
- = Agent-based spatial model class
- \rightarrow Diffusion of innovations
- → **Resource use changes**
- \rightarrow Dynamic policy analysis

Outline

- 1. Combination of MAS and CA
- 2. Empirical parameterization
- 3. Validation of model outcomes
- 4. Wrapping up
- 5. Multiple Agent Modeling at ZEF

Dynamic Spatial Modeling of LUC

Statements:

- Spatial patterns of land use change can be modeled in terms of individuals' economic decisions
- Data requirements can be met by applying a "common sampling frame"
- *Ex ante* impact assessment of technological alternatives and policy options provides useful insights for policy makers

Steps for Model Building

- (1) Define the basic entities or agents of an agricultural region (e.g. farm-households, landscape units, hydrologic units)
- (2) Establish the rules for their dynamics and interactions
- (3) Set up the starting situation and calibrate the spatial MAS on micro and macro level
- (4) Run the simulation model and observe "selforganizing" processes at aggregate level

Bandwagon Process

Adopter categories

Network thresholds

Adoption Decision Rule

- (1) Monitor the present adoption level and compare it with the individual threshold
- (2) If threshold is reached, calculate the farm's net benefits from adoption
- (3) If the net benefits are positive, adopt the technology

Adding a few more assumptions allows predicting the time path of adoption for several technologies simultaneously

Spatial Data Representation

Flow Chart

Variables and Parameters

Exogenously Determined Endogenous Variables Variables

Parameters

market prices for "tradeables" interest rates wages

taxes and contributions minimum consumption level supply of land supply of freshwater supply of innovations initial location of farms prices for "non-tradeables" acreages of crops yields investment levels

working capital expenditures borrowing and saving levels labor utilization return flows in irrigation ownership of plots/water input-output coefficients depreciation rates sunk costs for fixed assets unit transport cost adoption constraints expectation coefficients

Estimation of Model Parameters

- (1) Farm-Household Survey (round 1)
- (2) Identification of household groups
- (3) Selection of representative households
- (4) Farm-Household Survey (round 2)
- (5) Estimation of parameters for LP-Matrix
- (6) Generation of a complete household data set (random-generated "synthetic" data)

Study Area (Chile)

Policy-related Research Questions

- (1) Can we expect substantial changes in the use of land and water as a result of water-saving irrigation methods?
- (2) Will these innovations create sufficient incomes and reach the traditional farmers?
- (3) Will out-migration increase or decrease?
- (4) What will be the structural effects of a "treadmill" innovation process?

Model Validation

"Goodness of fit" at micro and macro-level
0.977 (standard error = 0.01, R² = 0.991)
0.704 (standard error = 0.107, R² = 0.657)

 Robustness experiments and supportive statistical tests identical and changing starting conditions (average income; on-farm labor allocation)

Expert opinion and "peer" review

Simulation Results: Land Use

Simulation Results: Irrigation

Simulation Results: Incomes

Simulation Results: Farm Exits

Simulation Results: On-Farm Labor

Conclusions

◆ Heterogeneous economic behavior and policy responses from the farm-households' viewpoint ◆ Introduction of improved land use practices and migration as a farm investment decision ◆ Inclusion of inter-household linkages permits modeling of "bottom-up" phenomena • Further integration of biophysical and socioeconomic processes at multiple spatial scales is called for

ZEF's Research Portfolio

Project 1

Technical and structural change in agriculture - Chile (completed in 1999)

- Diffusion of water-saving irrigation methods in a watershed
- Structural effects of a 'treadmill' innovation process in agriculture

Project 2

Policies for improved land management - Uganda (with IFPRI)

- Introduction of sustainable land-use practices as a farm investment decision
- Identification of suitable policy incentives to enhance the adoption of such practices

Project 3

Interrelated water and land use changes in the context of global change – Volta Basin (LUCC endorsed)

- Spatially explicit representation of decision-making processes
- Human responses to policy and environmental changes

Project 4

Community-based management of natural resources - Ghana (Robert-Bosch-Foundation)

- Collective action and environmental externalities
- Dynamic evolution of property rights institutions