
An Introduction to Pattern Statistics

• Nearest Neighbors
The CSR hypothesis
Clark/Evans and modification
Cuzick and Edwards and controls

• All events
k function
Weighted k function
Comparative k functions



Nearest Neighbors

• The CSR Assumptions
1.  All possible sites are equally likely to receive a point

2.  The placement of a point is independent of the 
placement of all other points

• Quadrats or distances
• The Poisson Distribution

P(x) = λx e-λ /x!   For x=0,1,2,...



Clark/Evans and Modification

• Distance-based

• Finds expected distance to nearest neighbor in a CSR pattern:  [E(d)]

• E(d) = 0.5 [(A/N)]0.5 + [0.0514 +0.041/ (N)0.5] B/N
and
Var(mean d) = 0.070 A/N2 + 0.037 B [A/(N5)]0.5

• Z = [(observed mean d) - E(d)] / [Var(mean d)]0.5

where A = area, N = total number of points, B = length of the perimeter



Cuzick and Edwards and Controls 
(k nearest neighbors)

• A method for detecting spatial clustering for populations with non-uniform 
density.

• Label cases as xi and controls as yi

• Counts the number of cases (xi) among the k nearest neighbors (xi and yi) to 
each case.

• Finds the theoretical distribution by permutation.
• Asymptotically normal.  Provides test:  the locations of the cases and controls 

follow a non-homogeneous Poisson process.



K Function Analysis: A Global 
Statistic

L(d) = {(A[ΣΣ K (dij)]/ π N(N-1) }½

where K(dij) is the number of pairs of points within 
d of i, and A is the area of the region under study.
Used to discern the clustering pattern of the 
specified variable within the entire study area.
An output file gives a table showing L values for 
each distance (d) increment.  E[L(d)] in a random
distribution is d. 
Used to give access to controls. 
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The Random Expectation of K
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Pattern of Houses in Maynas Study "A" 
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Lw(d)

{ AΣiΣj uij
-1Id(dij≤d)xixj}     

Lw(d) = [—————————— ]1/2 i≠j

{ π[(Σixi)2 -Σixi
2]}
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K-function for adult Aedes aegypti
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Weighted K-Function Analysis for Aedes aegypti 
Adults in Maynas Study "A"
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Weighted K-Function Analysis for Aedes aegypti 
Pupae in Maynas Study "A" 
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Weighted K-Function Analysis for Positive Containers
 in Maynas Study "A"
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Weighted K-Function Analysis for All Water-Holding
 Containers in Maynas Study "A"
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Pattern Statistics

• GENERAL
I, c, K, G, Knox, Mantel, Tango,  
Grimson, Cuzick and Edwards,
Kernels, Scan

• FOCUSED
Ii, ci, Gi, Gi*, GWR, Oi



Global Statistics

• Nearest Neighbor
• K-Function
• Global Autocorrelation Statistics

Moran’s I
Geary’s c
Semivariance



WY  :Covariance

• Set W to preferred spatial weights matrix
• Set Y to
• (xi - µ) (yi - µ)
• Set scale to n/W Σ(xi - µ)2

• I = n  Σ Σ Wij (xi - µ) (yi - µ) / W Σ(xi - µ)2

where W is sum of all Wij



WY  : Difference

• Set W to preferred spatial weights matrix
• Set Y to
• (xi - yi)2

• Set scale to (n-1)/2WΣ(xi - µ)2

• c = (n - 1) Σ Σ Wij (xi - yi))2/ 2WΣ(xi - µ)2

where W is sum of all Wij



Local Statistic

[Σj wij(d)xj - Wj* x]
Gi*(d) =  —————————— all j

s{[NS1j*-Wj
2*]/(N-1)}1/2

wij(d) is element of 1/0 spatial weights matrix
where 1 within d of i, 0 otherwise

Wj* = Σ wij(d)

S1j * = Σj wij
2 (all j)





The Gi
* Statistic

• The Gi
* statistic is local, that is, it is focused on sites and   

is normally distributed.  It is designed to yield a measure of 
pattern in standard normal variates.

• Indicates the extent to which a location (site) is surrounded 
to a distance d by a cluster of high or low values (in this 
case, we focus on high values).

• The input is a file containing coordinates for each house 
and, for example, the number of adult Aedes aegypti. User 
specifies maximum search distance (100 meters in this 
case) and number of increments (10 10-meter increments).

• The output file contains a listing of the Gi
*(d) value for 

each house at a specified distance (d).
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Crime Clustering Packages

• STAC (Spatial and Temporal Analysis of Crime)
• GAM (Geographical Analysis Machine)
• SaTScan (Spatial and Space-Time Scan Statistic)
• CrimeStat (Crime Mapping Research Center)



Typology of Crime Mapping Applications
(after Craglia, Haining, and Wiles)

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Application Data Scale Function

Dispatching Seconds/
Minutes

Site Visualization

Community
policing

Hours/days Neighborhood Mapping

Resource
planning

Weeks/
months/years

City Analysis/
modeling

-



Problems

• The problem of ellipses
• Smoothing effects
• Hierarchical scales
• Incidents and not risk



Problems with Local Stats

• Global heterogeneity
• Multiple Tests
• Dependent Tests



The Oi Statistic

• The null hypothesis of local autocorrelation

• A recommended partition



Multiple Dependent Tests

• Overlap
• Seemingly independent tests
• Virtual v



Seemingly Independent Tests:

Addressing the Problem of Multiple 
Simultaneous and Dependent Tests



Appropriate Inferential Bounds?

• Multiple Tests
• Simultaneous Tests
• Dependent Tests



Sidak:  1- α = (1- p)k

Multiple tests but not dependent tests.



Bonferroni:     α/k

Multiple tests but not dependent tests.



Virtual v

• K = mv

• where v is number of independent clusters,
• and m is number of observations within 
• each cluster



Correlation Between Tests = r

• v = k - r(k-1)

• and     1 - α = (1 - p)v 

• when r=1, v=1;  when r=0, v=k
• lower bound for r:    -1/(k-1)
• highest possible v:  k+1



Number of Tests with Dependence

• Possible Clustering of aedes aegypti in Mynas 
Section of Iquitos

• Houses = 543 = k  
• Set d=10 meters
• Overlap (r estimated at 0.500)  
• v = k-r(k-1) = 271 
• for .95 level; pv = (.989007)271 = 0.0500
• Z = 2.290931



Data Mining

• Extension of EDA
• Inductive methods
• Substance versus significance
• Selection biases
• Process



Geostatistics

• Semivariance and the Semivariogram

• Kriging



Semivariance

• A measure of the degree of spatial dependence between 
observations of a regionalized variable.

• Formulation

γh = Σ (xi - xi+h)2/ 2n

where h is the distance interval between points.

The plot for a number of h’s is called the semivariogram.         



Characteristics of Semivariogram

• Range
• Sill
• Nugget
• Autocorrelation
• Variance = Sill



Semivariograms

• OBSERVED
• THEORETICAL

Spherical
Exponential
Linear (with sill)
Gaussian



Intrinsic Stationarity

Variogram analysis cannot proceed 
without acceptable assumptions,
chief of which is intrinsic stationarity.



Kriging

• The Idea of Kriging

• Models
Simple (punctual)
Ordinary (punctual)
Universal (punctual)
Block
Cokriging 
Others



Simple Kriging

• Z(x0) = m + YW-1B
• where m = assumed mean (known)
• Y = observations in the vicinity of x0    (-m)
• W = correlation - semivariance (for all

pairs of observations)
• B =  correlation - semivariance (for all              

pairs between observations and x0)



Ordinary Kriging

• Z(x0) =   YW-1B



Universal Kriging

• Drift



Block Kriging

• Areas or volumes



Cokriging

• More than one variable used to estimate 
value at a particular location.



Spatial Filtering

• To find the degree to which each social variable is 
affected by spatial autocorrelation. 

• Separate the spatial effects from the non-spatial 
effects.  

• Develop spatial and non-spatial variables.

• Use Getis filtering approach (Gi* statistic).
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Large Dataset Problems

• heterogeneity
• partitions
• outliers
• missing data
• single fit
• multicollinearity
• data integration



A Local Variogram (1)

• We may define the effective range of the data as 
the distance dr at which the variogram flattens out.

• At any distance less than dr the correlation 
between any two pixels is greater than 0.  The 
correlation between pixels dr apart or greater is 0.



A Local Variogram (2)

• In this approach, we center on a pixel, i, and 
define the effective continuous region as that 
which contains:

1.  pixels that are correlated with one
another.

2.  a discernible range, dri  .



A Local Variogram (3)

• The number of pixels within the entire
dataset is N and the number within the local 
variogram is Mi.

• Mi represents the partition.
• M may vary for each i th pixel.
• If dri cannot be found for an i th pixel,

any analysis would have to be rethought for that 
partition.



Finding dri and, therefore, Mi

Qi = ΣΣ ρ( uj-vk) = ΣΣ Cjk (j,k) j,k ∈ Mi

• which sums the correlations between each pair of 
members within a trial partition starting with d = 
1, then d = 2, and so on. 

• when Qi fails to increase after d is increased,  dri  
and, therefore, Mi is reached.



Finding the Sum of the ρ’s:
d = 1



Finding the Sum of the ρ’s:
d = 2

i



Sum of the ρ’s

• Autocorrelations (r) are estimated from the M observations 
as opposed to fitting a variogram model. 

• Variogram models (spherical, exponential, linear, Gauss) 
may be poor descriptors of the spatial autocorrelation in 
the dataset.



The Number of Correlations for d=2

Distance       Number of correlations
1                          16
√2                          16

2                          10
√5                          16
√8                            6

3                            4
√10                            8

4                            2 



Example

For the values of r, d2 is in parentheses: 
r(1)=0.236     r(2)=0.246     r(4)=0.215    r(5)=0.197      r(8)=0.184   
r(9)=0.158    r(10)=0.166 r(13)=0.116   r(16)=0.106  r(17)=0.090
r(18)=0.053   r(20)=0.062  r(25)=0.058   r(26)=0.037   r(29)=0.036
r(32)=0.026   r(34)=0.021  r(36)=0.028   r(37)=0.016  
r(40 to 169)=0 
Q      = 1168.392
dri =         6.325
Mi =    129



Partition Routine
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